Dassl.pytorch/dassl/data/datasets/da/office31.py (37 lines of code) (raw):

import os.path as osp from dassl.utils import listdir_nohidden from ..build import DATASET_REGISTRY from ..base_dataset import Datum, DatasetBase @DATASET_REGISTRY.register() class Office31(DatasetBase): """Office-31. Statistics: - 4,110 images. - 31 classes related to office objects. - 3 domains: Amazon, Webcam, Dslr. - URL: https://people.eecs.berkeley.edu/~jhoffman/domainadapt/. Reference: - Saenko et al. Adapting visual category models to new domains. ECCV 2010. """ dataset_dir = "office31" domains = ["amazon", "webcam", "dslr"] def __init__(self, cfg): root = osp.abspath(osp.expanduser(cfg.DATASET.ROOT)) self.dataset_dir = osp.join(root, self.dataset_dir) self.check_input_domains( cfg.DATASET.SOURCE_DOMAINS, cfg.DATASET.TARGET_DOMAINS ) train_x = self._read_data(cfg.DATASET.SOURCE_DOMAINS) train_u = self._read_data(cfg.DATASET.TARGET_DOMAINS) test = self._read_data(cfg.DATASET.TARGET_DOMAINS) super().__init__(train_x=train_x, train_u=train_u, test=test) def _read_data(self, input_domains): items = [] for domain, dname in enumerate(input_domains): domain_dir = osp.join(self.dataset_dir, dname) class_names = listdir_nohidden(domain_dir) class_names.sort() for label, class_name in enumerate(class_names): class_path = osp.join(domain_dir, class_name) imnames = listdir_nohidden(class_path) for imname in imnames: impath = osp.join(class_path, imname) item = Datum( impath=impath, label=label, domain=domain, classname=class_name ) items.append(item) return items