Dassl.pytorch/dassl/data/datasets/dg/cifar_c.py (76 lines of code) (raw):
import os.path as osp
from dassl.utils import listdir_nohidden
from ..build import DATASET_REGISTRY
from ..base_dataset import Datum, DatasetBase
AVAI_C_TYPES = [
"brightness",
"contrast",
"defocus_blur",
"elastic_transform",
"fog",
"frost",
"gaussian_blur",
"gaussian_noise",
"glass_blur",
"impulse_noise",
"jpeg_compression",
"motion_blur",
"pixelate",
"saturate",
"shot_noise",
"snow",
"spatter",
"speckle_noise",
"zoom_blur",
]
@DATASET_REGISTRY.register()
class CIFAR10C(DatasetBase):
"""CIFAR-10 -> CIFAR-10-C.
Dataset link: https://zenodo.org/record/2535967#.YFwtV2Qzb0o
Statistics:
- 2 domains: the normal CIFAR-10 vs. a corrupted CIFAR-10
- 10 categories
Reference:
- Hendrycks et al. Benchmarking neural network robustness
to common corruptions and perturbations. ICLR 2019.
"""
dataset_dir = ""
domains = ["cifar10", "cifar10_c"]
def __init__(self, cfg):
root = osp.abspath(osp.expanduser(cfg.DATASET.ROOT))
self.dataset_dir = root
self.check_input_domains(
cfg.DATASET.SOURCE_DOMAINS, cfg.DATASET.TARGET_DOMAINS
)
source_domain = cfg.DATASET.SOURCE_DOMAINS[0]
target_domain = cfg.DATASET.TARGET_DOMAINS[0]
assert source_domain == self.domains[0]
assert target_domain == self.domains[1]
c_type = cfg.DATASET.CIFAR_C_TYPE
c_level = cfg.DATASET.CIFAR_C_LEVEL
if not c_type:
raise ValueError(
"Please specify DATASET.CIFAR_C_TYPE in the config file"
)
assert (
c_type in AVAI_C_TYPES
), f'C_TYPE is expected to belong to {AVAI_C_TYPES}, but got "{c_type}"'
assert 1 <= c_level <= 5
train_dir = osp.join(self.dataset_dir, source_domain, "train")
test_dir = osp.join(
self.dataset_dir, target_domain, c_type, str(c_level)
)
if not osp.exists(test_dir):
raise ValueError
train = self._read_data(train_dir)
test = self._read_data(test_dir)
super().__init__(train_x=train, test=test)
def _read_data(self, data_dir):
class_names = listdir_nohidden(data_dir)
class_names.sort()
items = []
for label, class_name in enumerate(class_names):
class_dir = osp.join(data_dir, class_name)
imnames = listdir_nohidden(class_dir)
for imname in imnames:
impath = osp.join(class_dir, imname)
item = Datum(impath=impath, label=label, domain=0)
items.append(item)
return items
@DATASET_REGISTRY.register()
class CIFAR100C(CIFAR10C):
"""CIFAR-100 -> CIFAR-100-C.
Dataset link: https://zenodo.org/record/3555552#.YFxpQmQzb0o
Statistics:
- 2 domains: the normal CIFAR-100 vs. a corrupted CIFAR-100
- 10 categories
Reference:
- Hendrycks et al. Benchmarking neural network robustness
to common corruptions and perturbations. ICLR 2019.
"""
dataset_dir = ""
domains = ["cifar100", "cifar100_c"]
def __init__(self, cfg):
super().__init__(cfg)