Dassl.pytorch/dassl/data/datasets/dg/digits_dg.py (60 lines of code) (raw):
import glob
import os.path as osp
from dassl.utils import listdir_nohidden
from ..build import DATASET_REGISTRY
from ..base_dataset import Datum, DatasetBase
@DATASET_REGISTRY.register()
class DigitsDG(DatasetBase):
"""Digits-DG.
It contains 4 digit datasets:
- MNIST: hand-written digits.
- MNIST-M: variant of MNIST with blended background.
- SVHN: street view house number.
- SYN: synthetic digits.
Reference:
- Lecun et al. Gradient-based learning applied to document
recognition. IEEE 1998.
- Ganin et al. Domain-adversarial training of neural networks.
JMLR 2016.
- Netzer et al. Reading digits in natural images with unsupervised
feature learning. NIPS-W 2011.
- Zhou et al. Deep Domain-Adversarial Image Generation for Domain
Generalisation. AAAI 2020.
"""
dataset_dir = "digits_dg"
domains = ["mnist", "mnist_m", "svhn", "syn"]
data_url = "https://drive.google.com/uc?id=15V7EsHfCcfbKgsDmzQKj_DfXt_XYp_P7"
def __init__(self, cfg):
root = osp.abspath(osp.expanduser(cfg.DATASET.ROOT))
self.dataset_dir = osp.join(root, self.dataset_dir)
if not osp.exists(self.dataset_dir):
dst = osp.join(root, "digits_dg.zip")
self.download_data(self.data_url, dst, from_gdrive=True)
self.check_input_domains(
cfg.DATASET.SOURCE_DOMAINS, cfg.DATASET.TARGET_DOMAINS
)
train = self.read_data(
self.dataset_dir, cfg.DATASET.SOURCE_DOMAINS, "train"
)
val = self.read_data(
self.dataset_dir, cfg.DATASET.SOURCE_DOMAINS, "val"
)
test = self.read_data(
self.dataset_dir, cfg.DATASET.TARGET_DOMAINS, "all"
)
super().__init__(train_x=train, val=val, test=test)
@staticmethod
def read_data(dataset_dir, input_domains, split):
def _load_data_from_directory(directory):
folders = listdir_nohidden(directory)
folders.sort()
items_ = []
for label, folder in enumerate(folders):
impaths = glob.glob(osp.join(directory, folder, "*.jpg"))
for impath in impaths:
items_.append((impath, label))
return items_
items = []
for domain, dname in enumerate(input_domains):
if split == "all":
train_dir = osp.join(dataset_dir, dname, "train")
impath_label_list = _load_data_from_directory(train_dir)
val_dir = osp.join(dataset_dir, dname, "val")
impath_label_list += _load_data_from_directory(val_dir)
else:
split_dir = osp.join(dataset_dir, dname, split)
impath_label_list = _load_data_from_directory(split_dir)
for impath, label in impath_label_list:
class_name = impath.split("/")[-2].lower()
item = Datum(
impath=impath,
label=label,
domain=domain,
classname=class_name
)
items.append(item)
return items