Dassl.pytorch/dassl/data/datasets/ssl/cifar.py (65 lines of code) (raw):
import math
import random
import os.path as osp
from dassl.utils import listdir_nohidden
from ..build import DATASET_REGISTRY
from ..base_dataset import Datum, DatasetBase
@DATASET_REGISTRY.register()
class CIFAR10(DatasetBase):
"""CIFAR10 for SSL.
Reference:
- Krizhevsky. Learning Multiple Layers of Features
from Tiny Images. Tech report.
"""
dataset_dir = "cifar10"
def __init__(self, cfg):
root = osp.abspath(osp.expanduser(cfg.DATASET.ROOT))
self.dataset_dir = osp.join(root, self.dataset_dir)
train_dir = osp.join(self.dataset_dir, "train")
test_dir = osp.join(self.dataset_dir, "test")
assert cfg.DATASET.NUM_LABELED > 0
train_x, train_u, val = self._read_data_train(
train_dir, cfg.DATASET.NUM_LABELED, cfg.DATASET.VAL_PERCENT
)
test = self._read_data_test(test_dir)
if cfg.DATASET.ALL_AS_UNLABELED:
train_u = train_u + train_x
if len(val) == 0:
val = None
super().__init__(train_x=train_x, train_u=train_u, val=val, test=test)
def _read_data_train(self, data_dir, num_labeled, val_percent):
class_names = listdir_nohidden(data_dir)
class_names.sort()
num_labeled_per_class = num_labeled / len(class_names)
items_x, items_u, items_v = [], [], []
for label, class_name in enumerate(class_names):
class_dir = osp.join(data_dir, class_name)
imnames = listdir_nohidden(class_dir)
# Split into train and val following Oliver et al. 2018
# Set cfg.DATASET.VAL_PERCENT to 0 to not use val data
num_val = math.floor(len(imnames) * val_percent)
imnames_train = imnames[num_val:]
imnames_val = imnames[:num_val]
# Note we do shuffle after split
random.shuffle(imnames_train)
for i, imname in enumerate(imnames_train):
impath = osp.join(class_dir, imname)
item = Datum(impath=impath, label=label)
if (i + 1) <= num_labeled_per_class:
items_x.append(item)
else:
items_u.append(item)
for imname in imnames_val:
impath = osp.join(class_dir, imname)
item = Datum(impath=impath, label=label)
items_v.append(item)
return items_x, items_u, items_v
def _read_data_test(self, data_dir):
class_names = listdir_nohidden(data_dir)
class_names.sort()
items = []
for label, class_name in enumerate(class_names):
class_dir = osp.join(data_dir, class_name)
imnames = listdir_nohidden(class_dir)
for imname in imnames:
impath = osp.join(class_dir, imname)
item = Datum(impath=impath, label=label)
items.append(item)
return items
@DATASET_REGISTRY.register()
class CIFAR100(CIFAR10):
"""CIFAR100 for SSL.
Reference:
- Krizhevsky. Learning Multiple Layers of Features
from Tiny Images. Tech report.
"""
dataset_dir = "cifar100"
def __init__(self, cfg):
super().__init__(cfg)