Dassl.pytorch/dassl/data/transforms/randaugment.py (234 lines of code) (raw):

""" Credit to 1) https://github.com/ildoonet/pytorch-randaugment 2) https://github.com/kakaobrain/fast-autoaugment """ import numpy as np import random import PIL import torch import PIL.ImageOps import PIL.ImageDraw import PIL.ImageEnhance from PIL import Image def ShearX(img, v): assert -0.3 <= v <= 0.3 if random.random() > 0.5: v = -v return img.transform(img.size, PIL.Image.AFFINE, (1, v, 0, 0, 1, 0)) def ShearY(img, v): assert -0.3 <= v <= 0.3 if random.random() > 0.5: v = -v return img.transform(img.size, PIL.Image.AFFINE, (1, 0, 0, v, 1, 0)) def TranslateX(img, v): # [-150, 150] => percentage: [-0.45, 0.45] assert -0.45 <= v <= 0.45 if random.random() > 0.5: v = -v v = v * img.size[0] return img.transform(img.size, PIL.Image.AFFINE, (1, 0, v, 0, 1, 0)) def TranslateXabs(img, v): # [-150, 150] => percentage: [-0.45, 0.45] assert 0 <= v if random.random() > 0.5: v = -v return img.transform(img.size, PIL.Image.AFFINE, (1, 0, v, 0, 1, 0)) def TranslateY(img, v): # [-150, 150] => percentage: [-0.45, 0.45] assert -0.45 <= v <= 0.45 if random.random() > 0.5: v = -v v = v * img.size[1] return img.transform(img.size, PIL.Image.AFFINE, (1, 0, 0, 0, 1, v)) def TranslateYabs(img, v): # [-150, 150] => percentage: [-0.45, 0.45] assert 0 <= v if random.random() > 0.5: v = -v return img.transform(img.size, PIL.Image.AFFINE, (1, 0, 0, 0, 1, v)) def Rotate(img, v): assert -30 <= v <= 30 if random.random() > 0.5: v = -v return img.rotate(v) def AutoContrast(img, _): return PIL.ImageOps.autocontrast(img) def Invert(img, _): return PIL.ImageOps.invert(img) def Equalize(img, _): return PIL.ImageOps.equalize(img) def Flip(img, _): return PIL.ImageOps.mirror(img) def Solarize(img, v): assert 0 <= v <= 256 return PIL.ImageOps.solarize(img, v) def SolarizeAdd(img, addition=0, threshold=128): img_np = np.array(img).astype(np.int) img_np = img_np + addition img_np = np.clip(img_np, 0, 255) img_np = img_np.astype(np.uint8) img = Image.fromarray(img_np) return PIL.ImageOps.solarize(img, threshold) def Posterize(img, v): assert 4 <= v <= 8 v = int(v) return PIL.ImageOps.posterize(img, v) def Contrast(img, v): assert 0.0 <= v <= 2.0 return PIL.ImageEnhance.Contrast(img).enhance(v) def Color(img, v): assert 0.0 <= v <= 2.0 return PIL.ImageEnhance.Color(img).enhance(v) def Brightness(img, v): assert 0.0 <= v <= 2.0 return PIL.ImageEnhance.Brightness(img).enhance(v) def Sharpness(img, v): assert 0.0 <= v <= 2.0 return PIL.ImageEnhance.Sharpness(img).enhance(v) def Cutout(img, v): # [0, 60] => percentage: [0, 0.2] assert 0.0 <= v <= 0.2 if v <= 0.0: return img v = v * img.size[0] return CutoutAbs(img, v) def CutoutAbs(img, v): # [0, 60] => percentage: [0, 0.2] # assert 0 <= v <= 20 if v < 0: return img w, h = img.size x0 = np.random.uniform(w) y0 = np.random.uniform(h) x0 = int(max(0, x0 - v/2.0)) y0 = int(max(0, y0 - v/2.0)) x1 = min(w, x0 + v) y1 = min(h, y0 + v) xy = (x0, y0, x1, y1) color = (125, 123, 114) # color = (0, 0, 0) img = img.copy() PIL.ImageDraw.Draw(img).rectangle(xy, color) return img def SamplePairing(imgs): # [0, 0.4] def f(img1, v): i = np.random.choice(len(imgs)) img2 = PIL.Image.fromarray(imgs[i]) return PIL.Image.blend(img1, img2, v) return f def Identity(img, v): return img class Lighting: """Lighting noise (AlexNet - style PCA - based noise).""" def __init__(self, alphastd, eigval, eigvec): self.alphastd = alphastd self.eigval = torch.Tensor(eigval) self.eigvec = torch.Tensor(eigvec) def __call__(self, img): if self.alphastd == 0: return img alpha = img.new().resize_(3).normal_(0, self.alphastd) rgb = ( self.eigvec.type_as(img).clone().mul( alpha.view(1, 3).expand(3, 3) ).mul(self.eigval.view(1, 3).expand(3, 3)).sum(1).squeeze() ) return img.add(rgb.view(3, 1, 1).expand_as(img)) class CutoutDefault: """ Reference : https://github.com/quark0/darts/blob/master/cnn/utils.py """ def __init__(self, length): self.length = length def __call__(self, img): h, w = img.size(1), img.size(2) mask = np.ones((h, w), np.float32) y = np.random.randint(h) x = np.random.randint(w) y1 = np.clip(y - self.length // 2, 0, h) y2 = np.clip(y + self.length // 2, 0, h) x1 = np.clip(x - self.length // 2, 0, w) x2 = np.clip(x + self.length // 2, 0, w) mask[y1:y2, x1:x2] = 0.0 mask = torch.from_numpy(mask) mask = mask.expand_as(img) img *= mask return img def randaugment_list(): # 16 oeprations and their ranges # https://github.com/google-research/uda/blob/master/image/randaugment/policies.py#L57 # augs = [ # (Identity, 0., 1.0), # (ShearX, 0., 0.3), # 0 # (ShearY, 0., 0.3), # 1 # (TranslateX, 0., 0.33), # 2 # (TranslateY, 0., 0.33), # 3 # (Rotate, 0, 30), # 4 # (AutoContrast, 0, 1), # 5 # (Invert, 0, 1), # 6 # (Equalize, 0, 1), # 7 # (Solarize, 0, 110), # 8 # (Posterize, 4, 8), # 9 # # (Contrast, 0.1, 1.9), # 10 # (Color, 0.1, 1.9), # 11 # (Brightness, 0.1, 1.9), # 12 # (Sharpness, 0.1, 1.9), # 13 # # (Cutout, 0, 0.2), # 14 # # (SamplePairing(imgs), 0, 0.4) # 15 # ] # https://github.com/tensorflow/tpu/blob/8462d083dd89489a79e3200bcc8d4063bf362186/models/official/efficientnet/autoaugment.py#L505 augs = [ (AutoContrast, 0, 1), (Equalize, 0, 1), (Invert, 0, 1), (Rotate, 0, 30), (Posterize, 4, 8), (Solarize, 0, 256), (SolarizeAdd, 0, 110), (Color, 0.1, 1.9), (Contrast, 0.1, 1.9), (Brightness, 0.1, 1.9), (Sharpness, 0.1, 1.9), (ShearX, 0.0, 0.3), (ShearY, 0.0, 0.3), (CutoutAbs, 0, 40), (TranslateXabs, 0.0, 100), (TranslateYabs, 0.0, 100), ] return augs def randaugment_list2(): augs = [ (AutoContrast, 0, 1), (Brightness, 0.1, 1.9), (Color, 0.1, 1.9), (Contrast, 0.1, 1.9), (Equalize, 0, 1), (Identity, 0, 1), (Invert, 0, 1), (Posterize, 4, 8), (Rotate, -30, 30), (Sharpness, 0.1, 1.9), (ShearX, -0.3, 0.3), (ShearY, -0.3, 0.3), (Solarize, 0, 256), (TranslateX, -0.3, 0.3), (TranslateY, -0.3, 0.3), ] return augs def fixmatch_list(): # https://arxiv.org/abs/2001.07685 augs = [ (AutoContrast, 0, 1), (Brightness, 0.05, 0.95), (Color, 0.05, 0.95), (Contrast, 0.05, 0.95), (Equalize, 0, 1), (Identity, 0, 1), (Posterize, 4, 8), (Rotate, -30, 30), (Sharpness, 0.05, 0.95), (ShearX, -0.3, 0.3), (ShearY, -0.3, 0.3), (Solarize, 0, 256), (TranslateX, -0.3, 0.3), (TranslateY, -0.3, 0.3), ] return augs class RandAugment: def __init__(self, n=2, m=10): assert 0 <= m <= 30 self.n = n self.m = m self.augment_list = randaugment_list() def __call__(self, img): ops = random.choices(self.augment_list, k=self.n) for op, minval, maxval in ops: val = (self.m / 30) * (maxval-minval) + minval img = op(img, val) return img class RandAugment2: def __init__(self, n=2, p=0.6): self.n = n self.p = p self.augment_list = randaugment_list2() def __call__(self, img): ops = random.choices(self.augment_list, k=self.n) for op, minval, maxval in ops: if random.random() > self.p: continue m = random.random() val = m * (maxval-minval) + minval img = op(img, val) return img class RandAugmentFixMatch: def __init__(self, n=2): self.n = n self.augment_list = fixmatch_list() def __call__(self, img): ops = random.choices(self.augment_list, k=self.n) for op, minval, maxval in ops: m = random.random() val = m * (maxval-minval) + minval img = op(img, val) return img