Dassl.pytorch/dassl/engine/da/cdac.py (202 lines of code) (raw):
import numpy as np
from functools import partial
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.optim.lr_scheduler import LambdaLR
from dassl.data import DataManager
from dassl.optim import build_optimizer
from dassl.utils import count_num_param
from dassl.engine import TRAINER_REGISTRY, TrainerXU
from dassl.metrics import compute_accuracy
from dassl.modeling.ops import ReverseGrad
from dassl.engine.trainer import SimpleNet
from dassl.data.transforms.transforms import build_transform
def custom_scheduler(iter, max_iter=None, alpha=10, beta=0.75, init_lr=0.001):
"""Custom LR Annealing
https://arxiv.org/pdf/1409.7495.pdf
"""
if max_iter is None:
return init_lr
return (1 + float(iter / max_iter) * alpha)**(-1.0 * beta)
class AAC(nn.Module):
def forward(self, sim_mat, prob_u, prob_us):
P = prob_u.matmul(prob_us.t())
loss = -(
sim_mat * torch.log(P + 1e-7) +
(1.-sim_mat) * torch.log(1. - P + 1e-7)
)
return loss.mean()
class Prototypes(nn.Module):
def __init__(self, fdim, num_classes, temp=0.05):
super().__init__()
self.prototypes = nn.Linear(fdim, num_classes, bias=False)
self.temp = temp
self.revgrad = ReverseGrad()
def forward(self, x, reverse=False):
if reverse:
x = self.revgrad(x)
x = F.normalize(x, p=2, dim=1)
out = self.prototypes(x)
out = out / self.temp
return out
@TRAINER_REGISTRY.register()
class CDAC(TrainerXU):
"""Cross Domain Adaptive Clustering.
https://arxiv.org/pdf/2104.09415.pdf
"""
def __init__(self, cfg):
self.rampup_coef = cfg.TRAINER.CDAC.RAMPUP_COEF
self.rampup_iters = cfg.TRAINER.CDAC.RAMPUP_ITRS
self.lr_multi = cfg.TRAINER.CDAC.CLASS_LR_MULTI
self.topk = cfg.TRAINER.CDAC.TOPK_MATCH
self.p_thresh = cfg.TRAINER.CDAC.P_THRESH
self.aac_criterion = AAC()
super().__init__(cfg)
def check_cfg(self, cfg):
assert len(
cfg.TRAINER.CDAC.STRONG_TRANSFORMS
) > 0, "Strong augmentations are necessary to run CDAC"
assert cfg.DATALOADER.K_TRANSFORMS == 2, "CDAC needs two strong augmentations of the same image."
def build_data_loader(self):
cfg = self.cfg
tfm_train = build_transform(cfg, is_train=True)
custom_tfm_train = [tfm_train]
choices = cfg.TRAINER.CDAC.STRONG_TRANSFORMS
tfm_train_strong = build_transform(cfg, is_train=True, choices=choices)
custom_tfm_train += [tfm_train_strong]
self.dm = DataManager(self.cfg, custom_tfm_train=custom_tfm_train)
self.train_loader_x = self.dm.train_loader_x
self.train_loader_u = self.dm.train_loader_u
self.val_loader = self.dm.val_loader
self.test_loader = self.dm.test_loader
self.num_classes = self.dm.num_classes
self.lab2cname = self.dm.lab2cname
def build_model(self):
cfg = self.cfg
# Custom LR Scheduler for CDAC
if self.cfg.TRAIN.COUNT_ITER == "train_x":
self.num_batches = len(self.train_loader_x)
elif self.cfg.TRAIN.COUNT_ITER == "train_u":
self.num_batches = len(self.len_train_loader_u)
elif self.cfg.TRAIN.COUNT_ITER == "smaller_one":
self.num_batches = min(
len(self.train_loader_x), len(self.train_loader_u)
)
self.max_iter = self.max_epoch * self.num_batches
print("Max Iterations: %d" % self.max_iter)
print("Building F")
self.F = SimpleNet(cfg, cfg.MODEL, 0)
self.F.to(self.device)
print("# params: {:,}".format(count_num_param(self.F)))
self.optim_F = build_optimizer(self.F, cfg.OPTIM)
custom_lr_F = partial(
custom_scheduler, max_iter=self.max_iter, init_lr=cfg.OPTIM.LR
)
self.sched_F = LambdaLR(self.optim_F, custom_lr_F)
self.register_model("F", self.F, self.optim_F, self.sched_F)
print("Building C")
self.C = Prototypes(self.F.fdim, self.num_classes)
self.C.to(self.device)
print("# params: {:,}".format(count_num_param(self.C)))
self.optim_C = build_optimizer(self.C, cfg.OPTIM)
# Multiply the learning rate of C by lr_multi
for group_param in self.optim_C.param_groups:
group_param['lr'] *= self.lr_multi
custom_lr_C = partial(
custom_scheduler,
max_iter=self.max_iter,
init_lr=cfg.OPTIM.LR * self.lr_multi
)
self.sched_C = LambdaLR(self.optim_C, custom_lr_C)
self.register_model("C", self.C, self.optim_C, self.sched_C)
def assess_y_pred_quality(self, y_pred, y_true, mask):
n_masked_correct = (y_pred.eq(y_true).float() * mask).sum()
acc_thre = n_masked_correct / (mask.sum() + 1e-5)
acc_raw = y_pred.eq(y_true).sum() / y_pred.numel() # raw accuracy
keep_rate = mask.sum() / mask.numel()
output = {
"acc_thre": acc_thre,
"acc_raw": acc_raw,
"keep_rate": keep_rate
}
return output
def forward_backward(self, batch_x, batch_u):
current_itr = self.epoch * self.num_batches + self.batch_idx
input_x, label_x, input_u, input_us, input_us2, label_u = self.parse_batch_train(
batch_x, batch_u
)
# Paper Reference Eq. 2 - Supervised Loss
feat_x = self.F(input_x)
logit_x = self.C(feat_x)
loss_x = F.cross_entropy(logit_x, label_x)
self.model_backward_and_update(loss_x)
feat_u = self.F(input_u)
feat_us = self.F(input_us)
feat_us2 = self.F(input_us2)
# Paper Reference Eq.3 - Adversarial Adaptive Loss
logit_u = self.C(feat_u, reverse=True)
logit_us = self.C(feat_us, reverse=True)
prob_u, prob_us = F.softmax(logit_u, dim=1), F.softmax(logit_us, dim=1)
# Get similarity matrix s_ij
sim_mat = self.get_similarity_matrix(feat_u, self.topk, self.device)
aac_loss = (-1. * self.aac_criterion(sim_mat, prob_u, prob_us))
# Paper Reference Eq. 4 - Pseudo label Loss
logit_u = self.C(feat_u)
logit_us = self.C(feat_us)
logit_us2 = self.C(feat_us2)
prob_u, prob_us, prob_us2 = F.softmax(
logit_u, dim=1
), F.softmax(
logit_us, dim=1
), F.softmax(
logit_us2, dim=1
)
prob_u = prob_u.detach()
max_probs, max_idx = torch.max(prob_u, dim=-1)
mask = max_probs.ge(self.p_thresh).float()
p_u_stats = self.assess_y_pred_quality(max_idx, label_u, mask)
pl_loss = (
F.cross_entropy(logit_us2, max_idx, reduction='none') * mask
).mean()
# Paper Reference Eq. 8 - Consistency Loss
cons_multi = self.sigmoid_rampup(
current_itr=current_itr, rampup_itr=self.rampup_iters
) * self.rampup_coef
cons_loss = cons_multi * F.mse_loss(prob_us, prob_us2)
loss_u = aac_loss + pl_loss + cons_loss
self.model_backward_and_update(loss_u)
loss_summary = {
"loss_x": loss_x.item(),
"acc_x": compute_accuracy(logit_x, label_x)[0].item(),
"loss_u": loss_u.item(),
"aac_loss": aac_loss.item(),
"pl_loss": pl_loss.item(),
"cons_loss": cons_loss.item(),
"p_u_pred_acc": p_u_stats["acc_raw"],
"p_u_pred_acc_thre": p_u_stats["acc_thre"],
"p_u_pred_keep": p_u_stats["keep_rate"]
}
# Update LR after every iteration as mentioned in the paper
self.update_lr()
return loss_summary
def parse_batch_train(self, batch_x, batch_u):
input_x = batch_x["img"][0]
label_x = batch_x["label"]
input_u = batch_u["img"][0]
input_us = batch_u["img2"][0]
input_us2 = batch_u["img2"][1]
label_u = batch_u["label"]
input_x = input_x.to(self.device)
label_x = label_x.to(self.device)
input_u = input_u.to(self.device)
input_us = input_us.to(self.device)
input_us2 = input_us2.to(self.device)
label_u = label_u.to(self.device)
return input_x, label_x, input_u, input_us, input_us2, label_u
def model_inference(self, input):
return self.C(self.F(input))
@staticmethod
def get_similarity_matrix(feat, topk, device):
feat_d = feat.detach()
feat_d = torch.sort(
torch.argsort(feat_d, dim=1, descending=True)[:, :topk], dim=1
)[0]
sim_mat = torch.zeros((feat_d.shape[0], feat_d.shape[0])).to(device)
for row in range(feat_d.shape[0]):
sim_mat[row, torch.all(feat_d == feat_d[row, :], dim=1)] = 1
return sim_mat
@staticmethod
def sigmoid_rampup(current_itr, rampup_itr):
"""Exponential Rampup
https://arxiv.org/abs/1610.02242
"""
if rampup_itr == 0:
return 1.0
else:
var = np.clip(current_itr, 0.0, rampup_itr)
phase = 1.0 - var/rampup_itr
return float(np.exp(-5.0 * phase * phase))