Dassl.pytorch/dassl/engine/da/dael.py (167 lines of code) (raw):

import torch import torch.nn as nn from dassl.data import DataManager from dassl.optim import build_optimizer, build_lr_scheduler from dassl.utils import count_num_param from dassl.engine import TRAINER_REGISTRY, TrainerXU from dassl.metrics import compute_accuracy from dassl.engine.trainer import SimpleNet from dassl.data.transforms import build_transform from dassl.modeling.ops.utils import create_onehot class Experts(nn.Module): def __init__(self, n_source, fdim, num_classes): super().__init__() self.linears = nn.ModuleList( [nn.Linear(fdim, num_classes) for _ in range(n_source)] ) self.softmax = nn.Softmax(dim=1) def forward(self, i, x): x = self.linears[i](x) x = self.softmax(x) return x @TRAINER_REGISTRY.register() class DAEL(TrainerXU): """Domain Adaptive Ensemble Learning. https://arxiv.org/abs/2003.07325. """ def __init__(self, cfg): super().__init__(cfg) n_domain = cfg.DATALOADER.TRAIN_X.N_DOMAIN batch_size = cfg.DATALOADER.TRAIN_X.BATCH_SIZE if n_domain <= 0: n_domain = self.num_source_domains self.split_batch = batch_size // n_domain self.n_domain = n_domain self.weight_u = cfg.TRAINER.DAEL.WEIGHT_U self.conf_thre = cfg.TRAINER.DAEL.CONF_THRE def check_cfg(self, cfg): assert cfg.DATALOADER.TRAIN_X.SAMPLER == "RandomDomainSampler" assert not cfg.DATALOADER.TRAIN_U.SAME_AS_X assert len(cfg.TRAINER.DAEL.STRONG_TRANSFORMS) > 0 def build_data_loader(self): cfg = self.cfg tfm_train = build_transform(cfg, is_train=True) custom_tfm_train = [tfm_train] choices = cfg.TRAINER.DAEL.STRONG_TRANSFORMS tfm_train_strong = build_transform(cfg, is_train=True, choices=choices) custom_tfm_train += [tfm_train_strong] dm = DataManager(self.cfg, custom_tfm_train=custom_tfm_train) self.train_loader_x = dm.train_loader_x self.train_loader_u = dm.train_loader_u self.val_loader = dm.val_loader self.test_loader = dm.test_loader self.num_classes = dm.num_classes self.num_source_domains = dm.num_source_domains self.lab2cname = dm.lab2cname def build_model(self): cfg = self.cfg print("Building F") self.F = SimpleNet(cfg, cfg.MODEL, 0) self.F.to(self.device) print("# params: {:,}".format(count_num_param(self.F))) self.optim_F = build_optimizer(self.F, cfg.OPTIM) self.sched_F = build_lr_scheduler(self.optim_F, cfg.OPTIM) self.register_model("F", self.F, self.optim_F, self.sched_F) fdim = self.F.fdim print("Building E") self.E = Experts(self.num_source_domains, fdim, self.num_classes) self.E.to(self.device) print("# params: {:,}".format(count_num_param(self.E))) self.optim_E = build_optimizer(self.E, cfg.OPTIM) self.sched_E = build_lr_scheduler(self.optim_E, cfg.OPTIM) self.register_model("E", self.E, self.optim_E, self.sched_E) def forward_backward(self, batch_x, batch_u): parsed_data = self.parse_batch_train(batch_x, batch_u) input_x, input_x2, label_x, domain_x, input_u, input_u2 = parsed_data input_x = torch.split(input_x, self.split_batch, 0) input_x2 = torch.split(input_x2, self.split_batch, 0) label_x = torch.split(label_x, self.split_batch, 0) domain_x = torch.split(domain_x, self.split_batch, 0) domain_x = [d[0].item() for d in domain_x] # Generate pseudo label with torch.no_grad(): feat_u = self.F(input_u) pred_u = [] for k in range(self.num_source_domains): pred_uk = self.E(k, feat_u) pred_uk = pred_uk.unsqueeze(1) pred_u.append(pred_uk) pred_u = torch.cat(pred_u, 1) # (B, K, C) # Get the highest probability and index (label) for each expert experts_max_p, experts_max_idx = pred_u.max(2) # (B, K) # Get the most confident expert max_expert_p, max_expert_idx = experts_max_p.max(1) # (B) pseudo_label_u = [] for i, experts_label in zip(max_expert_idx, experts_max_idx): pseudo_label_u.append(experts_label[i]) pseudo_label_u = torch.stack(pseudo_label_u, 0) pseudo_label_u = create_onehot(pseudo_label_u, self.num_classes) pseudo_label_u = pseudo_label_u.to(self.device) label_u_mask = (max_expert_p >= self.conf_thre).float() loss_x = 0 loss_cr = 0 acc_x = 0 feat_x = [self.F(x) for x in input_x] feat_x2 = [self.F(x) for x in input_x2] feat_u2 = self.F(input_u2) for feat_xi, feat_x2i, label_xi, i in zip( feat_x, feat_x2, label_x, domain_x ): cr_s = [j for j in domain_x if j != i] # Learning expert pred_xi = self.E(i, feat_xi) loss_x += (-label_xi * torch.log(pred_xi + 1e-5)).sum(1).mean() expert_label_xi = pred_xi.detach() acc_x += compute_accuracy(pred_xi.detach(), label_xi.max(1)[1])[0].item() # Consistency regularization cr_pred = [] for j in cr_s: pred_j = self.E(j, feat_x2i) pred_j = pred_j.unsqueeze(1) cr_pred.append(pred_j) cr_pred = torch.cat(cr_pred, 1) cr_pred = cr_pred.mean(1) loss_cr += ((cr_pred - expert_label_xi)**2).sum(1).mean() loss_x /= self.n_domain loss_cr /= self.n_domain acc_x /= self.n_domain # Unsupervised loss pred_u = [] for k in range(self.num_source_domains): pred_uk = self.E(k, feat_u2) pred_uk = pred_uk.unsqueeze(1) pred_u.append(pred_uk) pred_u = torch.cat(pred_u, 1) pred_u = pred_u.mean(1) l_u = (-pseudo_label_u * torch.log(pred_u + 1e-5)).sum(1) loss_u = (l_u * label_u_mask).mean() loss = 0 loss += loss_x loss += loss_cr loss += loss_u * self.weight_u self.model_backward_and_update(loss) loss_summary = { "loss_x": loss_x.item(), "acc_x": acc_x, "loss_cr": loss_cr.item(), "loss_u": loss_u.item(), } if (self.batch_idx + 1) == self.num_batches: self.update_lr() return loss_summary def parse_batch_train(self, batch_x, batch_u): input_x = batch_x["img"] input_x2 = batch_x["img2"] label_x = batch_x["label"] domain_x = batch_x["domain"] input_u = batch_u["img"] input_u2 = batch_u["img2"] label_x = create_onehot(label_x, self.num_classes) input_x = input_x.to(self.device) input_x2 = input_x2.to(self.device) label_x = label_x.to(self.device) input_u = input_u.to(self.device) input_u2 = input_u2.to(self.device) return input_x, input_x2, label_x, domain_x, input_u, input_u2 def model_inference(self, input): f = self.F(input) p = [] for k in range(self.num_source_domains): p_k = self.E(k, f) p_k = p_k.unsqueeze(1) p.append(p_k) p = torch.cat(p, 1) p = p.mean(1) return p