Dassl.pytorch/dassl/engine/da/m3sda.py (149 lines of code) (raw):
import torch
import torch.nn as nn
from torch.nn import functional as F
from dassl.optim import build_optimizer, build_lr_scheduler
from dassl.utils import count_num_param
from dassl.engine import TRAINER_REGISTRY, TrainerXU
from dassl.engine.trainer import SimpleNet
class PairClassifiers(nn.Module):
def __init__(self, fdim, num_classes):
super().__init__()
self.c1 = nn.Linear(fdim, num_classes)
self.c2 = nn.Linear(fdim, num_classes)
def forward(self, x):
z1 = self.c1(x)
if not self.training:
return z1
z2 = self.c2(x)
return z1, z2
@TRAINER_REGISTRY.register()
class M3SDA(TrainerXU):
"""Moment Matching for Multi-Source Domain Adaptation.
https://arxiv.org/abs/1812.01754.
"""
def __init__(self, cfg):
super().__init__(cfg)
n_domain = cfg.DATALOADER.TRAIN_X.N_DOMAIN
batch_size = cfg.DATALOADER.TRAIN_X.BATCH_SIZE
if n_domain <= 0:
n_domain = self.num_source_domains
self.split_batch = batch_size // n_domain
self.n_domain = n_domain
self.n_step_F = cfg.TRAINER.M3SDA.N_STEP_F
self.lmda = cfg.TRAINER.M3SDA.LMDA
def check_cfg(self, cfg):
assert cfg.DATALOADER.TRAIN_X.SAMPLER == "RandomDomainSampler"
assert not cfg.DATALOADER.TRAIN_U.SAME_AS_X
def build_model(self):
cfg = self.cfg
print("Building F")
self.F = SimpleNet(cfg, cfg.MODEL, 0)
self.F.to(self.device)
print("# params: {:,}".format(count_num_param(self.F)))
self.optim_F = build_optimizer(self.F, cfg.OPTIM)
self.sched_F = build_lr_scheduler(self.optim_F, cfg.OPTIM)
self.register_model("F", self.F, self.optim_F, self.sched_F)
fdim = self.F.fdim
print("Building C")
self.C = nn.ModuleList(
[
PairClassifiers(fdim, self.num_classes)
for _ in range(self.num_source_domains)
]
)
self.C.to(self.device)
print("# params: {:,}".format(count_num_param(self.C)))
self.optim_C = build_optimizer(self.C, cfg.OPTIM)
self.sched_C = build_lr_scheduler(self.optim_C, cfg.OPTIM)
self.register_model("C", self.C, self.optim_C, self.sched_C)
def forward_backward(self, batch_x, batch_u):
parsed = self.parse_batch_train(batch_x, batch_u)
input_x, label_x, domain_x, input_u = parsed
input_x = torch.split(input_x, self.split_batch, 0)
label_x = torch.split(label_x, self.split_batch, 0)
domain_x = torch.split(domain_x, self.split_batch, 0)
domain_x = [d[0].item() for d in domain_x]
# Step A
loss_x = 0
feat_x = []
for x, y, d in zip(input_x, label_x, domain_x):
f = self.F(x)
z1, z2 = self.C[d](f)
loss_x += F.cross_entropy(z1, y) + F.cross_entropy(z2, y)
feat_x.append(f)
loss_x /= self.n_domain
feat_u = self.F(input_u)
loss_msda = self.moment_distance(feat_x, feat_u)
loss_step_A = loss_x + loss_msda * self.lmda
self.model_backward_and_update(loss_step_A)
# Step B
with torch.no_grad():
feat_u = self.F(input_u)
loss_x, loss_dis = 0, 0
for x, y, d in zip(input_x, label_x, domain_x):
with torch.no_grad():
f = self.F(x)
z1, z2 = self.C[d](f)
loss_x += F.cross_entropy(z1, y) + F.cross_entropy(z2, y)
z1, z2 = self.C[d](feat_u)
p1 = F.softmax(z1, 1)
p2 = F.softmax(z2, 1)
loss_dis += self.discrepancy(p1, p2)
loss_x /= self.n_domain
loss_dis /= self.n_domain
loss_step_B = loss_x - loss_dis
self.model_backward_and_update(loss_step_B, "C")
# Step C
for _ in range(self.n_step_F):
feat_u = self.F(input_u)
loss_dis = 0
for d in domain_x:
z1, z2 = self.C[d](feat_u)
p1 = F.softmax(z1, 1)
p2 = F.softmax(z2, 1)
loss_dis += self.discrepancy(p1, p2)
loss_dis /= self.n_domain
loss_step_C = loss_dis
self.model_backward_and_update(loss_step_C, "F")
loss_summary = {
"loss_step_A": loss_step_A.item(),
"loss_step_B": loss_step_B.item(),
"loss_step_C": loss_step_C.item(),
}
if (self.batch_idx + 1) == self.num_batches:
self.update_lr()
return loss_summary
def moment_distance(self, x, u):
# x (list): a list of feature matrix.
# u (torch.Tensor): feature matrix.
x_mean = [xi.mean(0) for xi in x]
u_mean = u.mean(0)
dist1 = self.pairwise_distance(x_mean, u_mean)
x_var = [xi.var(0) for xi in x]
u_var = u.var(0)
dist2 = self.pairwise_distance(x_var, u_var)
return (dist1+dist2) / 2
def pairwise_distance(self, x, u):
# x (list): a list of feature vector.
# u (torch.Tensor): feature vector.
dist = 0
count = 0
for xi in x:
dist += self.euclidean(xi, u)
count += 1
for i in range(len(x) - 1):
for j in range(i + 1, len(x)):
dist += self.euclidean(x[i], x[j])
count += 1
return dist / count
def euclidean(self, input1, input2):
return ((input1 - input2)**2).sum().sqrt()
def discrepancy(self, y1, y2):
return (y1 - y2).abs().mean()
def parse_batch_train(self, batch_x, batch_u):
input_x = batch_x["img"]
label_x = batch_x["label"]
domain_x = batch_x["domain"]
input_u = batch_u["img"]
input_x = input_x.to(self.device)
label_x = label_x.to(self.device)
input_u = input_u.to(self.device)
return input_x, label_x, domain_x, input_u
def model_inference(self, input):
f = self.F(input)
p = 0
for C_i in self.C:
z = C_i(f)
p += F.softmax(z, 1)
p = p / len(self.C)
return p