Dassl.pytorch/dassl/engine/da/mme.py (63 lines of code) (raw):

import torch import torch.nn as nn from torch.nn import functional as F from dassl.optim import build_optimizer, build_lr_scheduler from dassl.utils import count_num_param from dassl.engine import TRAINER_REGISTRY, TrainerXU from dassl.metrics import compute_accuracy from dassl.modeling.ops import ReverseGrad from dassl.engine.trainer import SimpleNet class Prototypes(nn.Module): def __init__(self, fdim, num_classes, temp=0.05): super().__init__() self.prototypes = nn.Linear(fdim, num_classes, bias=False) self.temp = temp def forward(self, x): x = F.normalize(x, p=2, dim=1) out = self.prototypes(x) out = out / self.temp return out @TRAINER_REGISTRY.register() class MME(TrainerXU): """Minimax Entropy. https://arxiv.org/abs/1904.06487. """ def __init__(self, cfg): super().__init__(cfg) self.lmda = cfg.TRAINER.MME.LMDA def build_model(self): cfg = self.cfg print("Building F") self.F = SimpleNet(cfg, cfg.MODEL, 0) self.F.to(self.device) print("# params: {:,}".format(count_num_param(self.F))) self.optim_F = build_optimizer(self.F, cfg.OPTIM) self.sched_F = build_lr_scheduler(self.optim_F, cfg.OPTIM) self.register_model("F", self.F, self.optim_F, self.sched_F) print("Building C") self.C = Prototypes(self.F.fdim, self.num_classes) self.C.to(self.device) print("# params: {:,}".format(count_num_param(self.C))) self.optim_C = build_optimizer(self.C, cfg.OPTIM) self.sched_C = build_lr_scheduler(self.optim_C, cfg.OPTIM) self.register_model("C", self.C, self.optim_C, self.sched_C) self.revgrad = ReverseGrad() def forward_backward(self, batch_x, batch_u): input_x, label_x, input_u = self.parse_batch_train(batch_x, batch_u) feat_x = self.F(input_x) logit_x = self.C(feat_x) loss_x = F.cross_entropy(logit_x, label_x) self.model_backward_and_update(loss_x) feat_u = self.F(input_u) feat_u = self.revgrad(feat_u) logit_u = self.C(feat_u) prob_u = F.softmax(logit_u, 1) loss_u = -(-prob_u * torch.log(prob_u + 1e-5)).sum(1).mean() self.model_backward_and_update(loss_u * self.lmda) loss_summary = { "loss_x": loss_x.item(), "acc_x": compute_accuracy(logit_x, label_x)[0].item(), "loss_u": loss_u.item(), } if (self.batch_idx + 1) == self.num_batches: self.update_lr() return loss_summary def model_inference(self, input): return self.C(self.F(input))