Dassl.pytorch/dassl/engine/ssl/sup_baseline.py (23 lines of code) (raw):
from torch.nn import functional as F
from dassl.engine import TRAINER_REGISTRY, TrainerXU
from dassl.metrics import compute_accuracy
@TRAINER_REGISTRY.register()
class SupBaseline(TrainerXU):
"""Supervised Baseline."""
def forward_backward(self, batch_x, batch_u):
input, label = self.parse_batch_train(batch_x, batch_u)
output = self.model(input)
loss = F.cross_entropy(output, label)
self.model_backward_and_update(loss)
loss_summary = {
"loss": loss.item(),
"acc": compute_accuracy(output, label)[0].item(),
}
if (self.batch_idx + 1) == self.num_batches:
self.update_lr()
return loss_summary
def parse_batch_train(self, batch_x, batch_u):
input = batch_x["img"]
label = batch_x["label"]
input = input.to(self.device)
label = label.to(self.device)
return input, label