Dassl.pytorch/dassl/modeling/backbone/cnn_digitsdg.py (41 lines of code) (raw):
import torch.nn as nn
from torch.nn import functional as F
from dassl.utils import init_network_weights
from .build import BACKBONE_REGISTRY
from .backbone import Backbone
class Convolution(nn.Module):
def __init__(self, c_in, c_out):
super().__init__()
self.conv = nn.Conv2d(c_in, c_out, 3, stride=1, padding=1)
self.relu = nn.ReLU(True)
def forward(self, x):
return self.relu(self.conv(x))
class ConvNet(Backbone):
def __init__(self, c_hidden=64):
super().__init__()
self.conv1 = Convolution(3, c_hidden)
self.conv2 = Convolution(c_hidden, c_hidden)
self.conv3 = Convolution(c_hidden, c_hidden)
self.conv4 = Convolution(c_hidden, c_hidden)
self._out_features = 2**2 * c_hidden
def _check_input(self, x):
H, W = x.shape[2:]
assert (
H == 32 and W == 32
), "Input to network must be 32x32, " "but got {}x{}".format(H, W)
def forward(self, x):
self._check_input(x)
x = self.conv1(x)
x = F.max_pool2d(x, 2)
x = self.conv2(x)
x = F.max_pool2d(x, 2)
x = self.conv3(x)
x = F.max_pool2d(x, 2)
x = self.conv4(x)
x = F.max_pool2d(x, 2)
return x.view(x.size(0), -1)
@BACKBONE_REGISTRY.register()
def cnn_digitsdg(**kwargs):
"""
This architecture was used for DigitsDG dataset in:
- Zhou et al. Deep Domain-Adversarial Image Generation
for Domain Generalisation. AAAI 2020.
"""
model = ConvNet(c_hidden=64)
init_network_weights(model, init_type="kaiming")
return model