Dassl.pytorch/dassl/modeling/backbone/cnn_digitsdg.py (41 lines of code) (raw):

import torch.nn as nn from torch.nn import functional as F from dassl.utils import init_network_weights from .build import BACKBONE_REGISTRY from .backbone import Backbone class Convolution(nn.Module): def __init__(self, c_in, c_out): super().__init__() self.conv = nn.Conv2d(c_in, c_out, 3, stride=1, padding=1) self.relu = nn.ReLU(True) def forward(self, x): return self.relu(self.conv(x)) class ConvNet(Backbone): def __init__(self, c_hidden=64): super().__init__() self.conv1 = Convolution(3, c_hidden) self.conv2 = Convolution(c_hidden, c_hidden) self.conv3 = Convolution(c_hidden, c_hidden) self.conv4 = Convolution(c_hidden, c_hidden) self._out_features = 2**2 * c_hidden def _check_input(self, x): H, W = x.shape[2:] assert ( H == 32 and W == 32 ), "Input to network must be 32x32, " "but got {}x{}".format(H, W) def forward(self, x): self._check_input(x) x = self.conv1(x) x = F.max_pool2d(x, 2) x = self.conv2(x) x = F.max_pool2d(x, 2) x = self.conv3(x) x = F.max_pool2d(x, 2) x = self.conv4(x) x = F.max_pool2d(x, 2) return x.view(x.size(0), -1) @BACKBONE_REGISTRY.register() def cnn_digitsdg(**kwargs): """ This architecture was used for DigitsDG dataset in: - Zhou et al. Deep Domain-Adversarial Image Generation for Domain Generalisation. AAAI 2020. """ model = ConvNet(c_hidden=64) init_network_weights(model, init_type="kaiming") return model