Dassl.pytorch/dassl/modeling/backbone/efficientnet/model.py (256 lines of code) (raw):
import torch
from torch import nn
from torch.nn import functional as F
from .utils import (
Swish, MemoryEfficientSwish, drop_connect, round_filters, round_repeats,
get_model_params, efficientnet_params, get_same_padding_conv2d,
load_pretrained_weights, calculate_output_image_size
)
from ..build import BACKBONE_REGISTRY
from ..backbone import Backbone
class MBConvBlock(nn.Module):
"""
Mobile Inverted Residual Bottleneck Block
Args:
block_args (namedtuple): BlockArgs, see above
global_params (namedtuple): GlobalParam, see above
Attributes:
has_se (bool): Whether the block contains a Squeeze and Excitation layer.
"""
def __init__(self, block_args, global_params, image_size=None):
super().__init__()
self._block_args = block_args
self._bn_mom = 1 - global_params.batch_norm_momentum
self._bn_eps = global_params.batch_norm_epsilon
self.has_se = (self._block_args.se_ratio is
not None) and (0 < self._block_args.se_ratio <= 1)
self.id_skip = block_args.id_skip # skip connection and drop connect
# Expansion phase
inp = self._block_args.input_filters # number of input channels
oup = (
self._block_args.input_filters * self._block_args.expand_ratio
) # number of output channels
if self._block_args.expand_ratio != 1:
Conv2d = get_same_padding_conv2d(image_size=image_size)
self._expand_conv = Conv2d(
in_channels=inp, out_channels=oup, kernel_size=1, bias=False
)
self._bn0 = nn.BatchNorm2d(
num_features=oup, momentum=self._bn_mom, eps=self._bn_eps
)
# image_size = calculate_output_image_size(image_size, 1) <-- this would do nothing
# Depthwise convolution phase
k = self._block_args.kernel_size
s = self._block_args.stride
Conv2d = get_same_padding_conv2d(image_size=image_size)
self._depthwise_conv = Conv2d(
in_channels=oup,
out_channels=oup,
groups=oup, # groups makes it depthwise
kernel_size=k,
stride=s,
bias=False,
)
self._bn1 = nn.BatchNorm2d(
num_features=oup, momentum=self._bn_mom, eps=self._bn_eps
)
image_size = calculate_output_image_size(image_size, s)
# Squeeze and Excitation layer, if desired
if self.has_se:
Conv2d = get_same_padding_conv2d(image_size=(1, 1))
num_squeezed_channels = max(
1,
int(
self._block_args.input_filters * self._block_args.se_ratio
)
)
self._se_reduce = Conv2d(
in_channels=oup,
out_channels=num_squeezed_channels,
kernel_size=1
)
self._se_expand = Conv2d(
in_channels=num_squeezed_channels,
out_channels=oup,
kernel_size=1
)
# Output phase
final_oup = self._block_args.output_filters
Conv2d = get_same_padding_conv2d(image_size=image_size)
self._project_conv = Conv2d(
in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False
)
self._bn2 = nn.BatchNorm2d(
num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps
)
self._swish = MemoryEfficientSwish()
def forward(self, inputs, drop_connect_rate=None):
"""
:param inputs: input tensor
:param drop_connect_rate: drop connect rate (float, between 0 and 1)
:return: output of block
"""
# Expansion and Depthwise Convolution
x = inputs
if self._block_args.expand_ratio != 1:
x = self._swish(self._bn0(self._expand_conv(inputs)))
x = self._swish(self._bn1(self._depthwise_conv(x)))
# Squeeze and Excitation
if self.has_se:
x_squeezed = F.adaptive_avg_pool2d(x, 1)
x_squeezed = self._se_expand(
self._swish(self._se_reduce(x_squeezed))
)
x = torch.sigmoid(x_squeezed) * x
x = self._bn2(self._project_conv(x))
# Skip connection and drop connect
input_filters, output_filters = (
self._block_args.input_filters,
self._block_args.output_filters,
)
if (
self.id_skip and self._block_args.stride == 1
and input_filters == output_filters
):
if drop_connect_rate:
x = drop_connect(
x, p=drop_connect_rate, training=self.training
)
x = x + inputs # skip connection
return x
def set_swish(self, memory_efficient=True):
"""Sets swish function as memory efficient (for training) or standard (for export)"""
self._swish = MemoryEfficientSwish() if memory_efficient else Swish()
class EfficientNet(Backbone):
"""
An EfficientNet model. Most easily loaded with the .from_name or .from_pretrained methods
Args:
blocks_args (list): A list of BlockArgs to construct blocks
global_params (namedtuple): A set of GlobalParams shared between blocks
Example:
model = EfficientNet.from_pretrained('efficientnet-b0')
"""
def __init__(self, blocks_args=None, global_params=None):
super().__init__()
assert isinstance(blocks_args, list), "blocks_args should be a list"
assert len(blocks_args) > 0, "block args must be greater than 0"
self._global_params = global_params
self._blocks_args = blocks_args
# Batch norm parameters
bn_mom = 1 - self._global_params.batch_norm_momentum
bn_eps = self._global_params.batch_norm_epsilon
# Get stem static or dynamic convolution depending on image size
image_size = global_params.image_size
Conv2d = get_same_padding_conv2d(image_size=global_params.image_size)
# Stem
in_channels = 3 # rgb
out_channels = round_filters(
32, self._global_params
) # number of output channels
self._conv_stem = Conv2d(
in_channels, out_channels, kernel_size=3, stride=2, bias=False
)
self._bn0 = nn.BatchNorm2d(
num_features=out_channels, momentum=bn_mom, eps=bn_eps
)
image_size = calculate_output_image_size(image_size, 2)
# Build blocks
self._blocks = nn.ModuleList([])
for block_args in self._blocks_args:
# Update block input and output filters based on depth multiplier.
block_args = block_args._replace(
input_filters=round_filters(
block_args.input_filters, self._global_params
),
output_filters=round_filters(
block_args.output_filters, self._global_params
),
num_repeat=round_repeats(
block_args.num_repeat, self._global_params
),
)
# The first block needs to take care of stride and filter size increase.
self._blocks.append(
MBConvBlock(
block_args, self._global_params, image_size=image_size
)
)
image_size = calculate_output_image_size(
image_size, block_args.stride
)
if block_args.num_repeat > 1:
block_args = block_args._replace(
input_filters=block_args.output_filters, stride=1
)
for _ in range(block_args.num_repeat - 1):
self._blocks.append(
MBConvBlock(
block_args, self._global_params, image_size=image_size
)
)
# image_size = calculate_output_image_size(image_size, block_args.stride) # ?
# Head
in_channels = block_args.output_filters # output of final block
out_channels = round_filters(1280, self._global_params)
Conv2d = get_same_padding_conv2d(image_size=image_size)
self._conv_head = Conv2d(
in_channels, out_channels, kernel_size=1, bias=False
)
self._bn1 = nn.BatchNorm2d(
num_features=out_channels, momentum=bn_mom, eps=bn_eps
)
# Final linear layer
self._avg_pooling = nn.AdaptiveAvgPool2d(1)
self._dropout = nn.Dropout(self._global_params.dropout_rate)
# self._fc = nn.Linear(out_channels, self._global_params.num_classes)
self._swish = MemoryEfficientSwish()
self._out_features = out_channels
def set_swish(self, memory_efficient=True):
"""Sets swish function as memory efficient (for training) or standard (for export)"""
self._swish = MemoryEfficientSwish() if memory_efficient else Swish()
for block in self._blocks:
block.set_swish(memory_efficient)
def extract_features(self, inputs):
"""Returns output of the final convolution layer"""
# Stem
x = self._swish(self._bn0(self._conv_stem(inputs)))
# Blocks
for idx, block in enumerate(self._blocks):
drop_connect_rate = self._global_params.drop_connect_rate
if drop_connect_rate:
drop_connect_rate *= float(idx) / len(self._blocks)
x = block(x, drop_connect_rate=drop_connect_rate)
# Head
x = self._swish(self._bn1(self._conv_head(x)))
return x
def forward(self, inputs):
"""
Calls extract_features to extract features, applies
final linear layer, and returns logits.
"""
bs = inputs.size(0)
# Convolution layers
x = self.extract_features(inputs)
# Pooling and final linear layer
x = self._avg_pooling(x)
x = x.view(bs, -1)
x = self._dropout(x)
# x = self._fc(x)
return x
@classmethod
def from_name(cls, model_name, override_params=None):
cls._check_model_name_is_valid(model_name)
blocks_args, global_params = get_model_params(
model_name, override_params
)
return cls(blocks_args, global_params)
@classmethod
def from_pretrained(
cls, model_name, advprop=False, num_classes=1000, in_channels=3
):
model = cls.from_name(
model_name, override_params={"num_classes": num_classes}
)
load_pretrained_weights(
model, model_name, load_fc=(num_classes == 1000), advprop=advprop
)
model._change_in_channels(in_channels)
return model
@classmethod
def get_image_size(cls, model_name):
cls._check_model_name_is_valid(model_name)
_, _, res, _ = efficientnet_params(model_name)
return res
@classmethod
def _check_model_name_is_valid(cls, model_name):
"""Validates model name."""
valid_models = ["efficientnet-b" + str(i) for i in range(9)]
if model_name not in valid_models:
raise ValueError(
"model_name should be one of: " + ", ".join(valid_models)
)
def _change_in_channels(model, in_channels):
if in_channels != 3:
Conv2d = get_same_padding_conv2d(
image_size=model._global_params.image_size
)
out_channels = round_filters(32, model._global_params)
model._conv_stem = Conv2d(
in_channels, out_channels, kernel_size=3, stride=2, bias=False
)
def build_efficientnet(name, pretrained):
if pretrained:
return EfficientNet.from_pretrained("efficientnet-{}".format(name))
else:
return EfficientNet.from_name("efficientnet-{}".format(name))
@BACKBONE_REGISTRY.register()
def efficientnet_b0(pretrained=True, **kwargs):
return build_efficientnet("b0", pretrained)
@BACKBONE_REGISTRY.register()
def efficientnet_b1(pretrained=True, **kwargs):
return build_efficientnet("b1", pretrained)
@BACKBONE_REGISTRY.register()
def efficientnet_b2(pretrained=True, **kwargs):
return build_efficientnet("b2", pretrained)
@BACKBONE_REGISTRY.register()
def efficientnet_b3(pretrained=True, **kwargs):
return build_efficientnet("b3", pretrained)
@BACKBONE_REGISTRY.register()
def efficientnet_b4(pretrained=True, **kwargs):
return build_efficientnet("b4", pretrained)
@BACKBONE_REGISTRY.register()
def efficientnet_b5(pretrained=True, **kwargs):
return build_efficientnet("b5", pretrained)
@BACKBONE_REGISTRY.register()
def efficientnet_b6(pretrained=True, **kwargs):
return build_efficientnet("b6", pretrained)
@BACKBONE_REGISTRY.register()
def efficientnet_b7(pretrained=True, **kwargs):
return build_efficientnet("b7", pretrained)