Dassl.pytorch/dassl/modeling/backbone/preact_resnet18.py (106 lines of code) (raw):
import torch.nn as nn
import torch.nn.functional as F
from .build import BACKBONE_REGISTRY
from .backbone import Backbone
class PreActBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super().__init__()
self.bn1 = nn.BatchNorm2d(in_planes)
self.conv1 = nn.Conv2d(
in_planes,
planes,
kernel_size=3,
stride=stride,
padding=1,
bias=False
)
self.bn2 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(
planes, planes, kernel_size=3, stride=1, padding=1, bias=False
)
if stride != 1 or in_planes != self.expansion * planes:
self.shortcut = nn.Sequential(
nn.Conv2d(
in_planes,
self.expansion * planes,
kernel_size=1,
stride=stride,
bias=False,
)
)
def forward(self, x):
out = F.relu(self.bn1(x))
shortcut = self.shortcut(out) if hasattr(self, "shortcut") else x
out = self.conv1(out)
out = self.conv2(F.relu(self.bn2(out)))
out += shortcut
return out
class PreActBottleneck(nn.Module):
expansion = 4
def __init__(self, in_planes, planes, stride=1):
super().__init__()
self.bn1 = nn.BatchNorm2d(in_planes)
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(
planes,
planes,
kernel_size=3,
stride=stride,
padding=1,
bias=False
)
self.bn3 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(
planes, self.expansion * planes, kernel_size=1, bias=False
)
if stride != 1 or in_planes != self.expansion * planes:
self.shortcut = nn.Sequential(
nn.Conv2d(
in_planes,
self.expansion * planes,
kernel_size=1,
stride=stride,
bias=False,
)
)
def forward(self, x):
out = F.relu(self.bn1(x))
shortcut = self.shortcut(out) if hasattr(self, "shortcut") else x
out = self.conv1(out)
out = self.conv2(F.relu(self.bn2(out)))
out = self.conv3(F.relu(self.bn3(out)))
out += shortcut
return out
class PreActResNet(Backbone):
def __init__(self, block, num_blocks):
super().__init__()
self.in_planes = 64
self.conv1 = nn.Conv2d(
3, 64, kernel_size=3, stride=1, padding=1, bias=False
)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
self._out_features = 512 * block.expansion
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1] * (num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
out = self.conv1(x)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
return out
"""
Preact-ResNet18 was used for the CIFAR10 and
SVHN datasets (both are SSL tasks) in
- Wang et al. Semi-Supervised Learning by
Augmented Distribution Alignment. ICCV 2019.
"""
@BACKBONE_REGISTRY.register()
def preact_resnet18(**kwargs):
return PreActResNet(PreActBlock, [2, 2, 2, 2])