Dassl.pytorch/dassl/modeling/backbone/preact_resnet18.py (106 lines of code) (raw):

import torch.nn as nn import torch.nn.functional as F from .build import BACKBONE_REGISTRY from .backbone import Backbone class PreActBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1): super().__init__() self.bn1 = nn.BatchNorm2d(in_planes) self.conv1 = nn.Conv2d( in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False ) self.bn2 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d( planes, planes, kernel_size=3, stride=1, padding=1, bias=False ) if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( nn.Conv2d( in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False, ) ) def forward(self, x): out = F.relu(self.bn1(x)) shortcut = self.shortcut(out) if hasattr(self, "shortcut") else x out = self.conv1(out) out = self.conv2(F.relu(self.bn2(out))) out += shortcut return out class PreActBottleneck(nn.Module): expansion = 4 def __init__(self, in_planes, planes, stride=1): super().__init__() self.bn1 = nn.BatchNorm2d(in_planes) self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d( planes, planes, kernel_size=3, stride=stride, padding=1, bias=False ) self.bn3 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d( planes, self.expansion * planes, kernel_size=1, bias=False ) if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( nn.Conv2d( in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False, ) ) def forward(self, x): out = F.relu(self.bn1(x)) shortcut = self.shortcut(out) if hasattr(self, "shortcut") else x out = self.conv1(out) out = self.conv2(F.relu(self.bn2(out))) out = self.conv3(F.relu(self.bn3(out))) out += shortcut return out class PreActResNet(Backbone): def __init__(self, block, num_blocks): super().__init__() self.in_planes = 64 self.conv1 = nn.Conv2d( 3, 64, kernel_size=3, stride=1, padding=1, bias=False ) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) self._out_features = 512 * block.expansion def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1] * (num_blocks-1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x): out = self.conv1(x) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) return out """ Preact-ResNet18 was used for the CIFAR10 and SVHN datasets (both are SSL tasks) in - Wang et al. Semi-Supervised Learning by Augmented Distribution Alignment. ICCV 2019. """ @BACKBONE_REGISTRY.register() def preact_resnet18(**kwargs): return PreActResNet(PreActBlock, [2, 2, 2, 2])