Dassl.pytorch/dassl/modeling/backbone/resnet.py (420 lines of code) (raw):

import torch.nn as nn import torch.utils.model_zoo as model_zoo from .build import BACKBONE_REGISTRY from .backbone import Backbone model_urls = { "resnet18": "https://download.pytorch.org/models/resnet18-5c106cde.pth", "resnet34": "https://download.pytorch.org/models/resnet34-333f7ec4.pth", "resnet50": "https://download.pytorch.org/models/resnet50-19c8e357.pth", "resnet101": "https://download.pytorch.org/models/resnet101-5d3b4d8f.pth", "resnet152": "https://download.pytorch.org/models/resnet152-b121ed2d.pth", } def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d( in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False ) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super().__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super().__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d( planes, planes, kernel_size=3, stride=stride, padding=1, bias=False ) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d( planes, planes * self.expansion, kernel_size=1, bias=False ) self.bn3 = nn.BatchNorm2d(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(Backbone): def __init__( self, block, layers, ms_class=None, ms_layers=[], ms_p=0.5, ms_a=0.1, **kwargs ): self.inplanes = 64 super().__init__() # backbone network self.conv1 = nn.Conv2d( 3, 64, kernel_size=7, stride=2, padding=3, bias=False ) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.global_avgpool = nn.AdaptiveAvgPool2d(1) self._out_features = 512 * block.expansion self.mixstyle = None if ms_layers: self.mixstyle = ms_class(p=ms_p, alpha=ms_a) for layer_name in ms_layers: assert layer_name in ["layer1", "layer2", "layer3"] print( f"Insert {self.mixstyle.__class__.__name__} after {ms_layers}" ) self.ms_layers = ms_layers self._init_params() def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d( self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False, ), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def _init_params(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_( m.weight, mode="fan_out", nonlinearity="relu" ) if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm1d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) if m.bias is not None: nn.init.constant_(m.bias, 0) def featuremaps(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) if "layer1" in self.ms_layers: x = self.mixstyle(x) x = self.layer2(x) if "layer2" in self.ms_layers: x = self.mixstyle(x) x = self.layer3(x) if "layer3" in self.ms_layers: x = self.mixstyle(x) return self.layer4(x) def forward(self, x): f = self.featuremaps(x) v = self.global_avgpool(f) return v.view(v.size(0), -1) def init_pretrained_weights(model, model_url): pretrain_dict = model_zoo.load_url(model_url) model.load_state_dict(pretrain_dict, strict=False) """ Residual network configurations: -- resnet18: block=BasicBlock, layers=[2, 2, 2, 2] resnet34: block=BasicBlock, layers=[3, 4, 6, 3] resnet50: block=Bottleneck, layers=[3, 4, 6, 3] resnet101: block=Bottleneck, layers=[3, 4, 23, 3] resnet152: block=Bottleneck, layers=[3, 8, 36, 3] """ @BACKBONE_REGISTRY.register() def resnet18(pretrained=True, **kwargs): model = ResNet(block=BasicBlock, layers=[2, 2, 2, 2]) if pretrained: init_pretrained_weights(model, model_urls["resnet18"]) return model @BACKBONE_REGISTRY.register() def resnet34(pretrained=True, **kwargs): model = ResNet(block=BasicBlock, layers=[3, 4, 6, 3]) if pretrained: init_pretrained_weights(model, model_urls["resnet34"]) return model @BACKBONE_REGISTRY.register() def resnet50(pretrained=True, **kwargs): model = ResNet(block=Bottleneck, layers=[3, 4, 6, 3]) if pretrained: init_pretrained_weights(model, model_urls["resnet50"]) return model @BACKBONE_REGISTRY.register() def resnet101(pretrained=True, **kwargs): model = ResNet(block=Bottleneck, layers=[3, 4, 23, 3]) if pretrained: init_pretrained_weights(model, model_urls["resnet101"]) return model @BACKBONE_REGISTRY.register() def resnet152(pretrained=True, **kwargs): model = ResNet(block=Bottleneck, layers=[3, 8, 36, 3]) if pretrained: init_pretrained_weights(model, model_urls["resnet152"]) return model """ Residual networks with mixstyle """ @BACKBONE_REGISTRY.register() def resnet18_ms_l123(pretrained=True, **kwargs): from dassl.modeling.ops import MixStyle model = ResNet( block=BasicBlock, layers=[2, 2, 2, 2], ms_class=MixStyle, ms_layers=["layer1", "layer2", "layer3"], ) if pretrained: init_pretrained_weights(model, model_urls["resnet18"]) return model @BACKBONE_REGISTRY.register() def resnet18_ms_l12(pretrained=True, **kwargs): from dassl.modeling.ops import MixStyle model = ResNet( block=BasicBlock, layers=[2, 2, 2, 2], ms_class=MixStyle, ms_layers=["layer1", "layer2"], ) if pretrained: init_pretrained_weights(model, model_urls["resnet18"]) return model @BACKBONE_REGISTRY.register() def resnet18_ms_l1(pretrained=True, **kwargs): from dassl.modeling.ops import MixStyle model = ResNet( block=BasicBlock, layers=[2, 2, 2, 2], ms_class=MixStyle, ms_layers=["layer1"] ) if pretrained: init_pretrained_weights(model, model_urls["resnet18"]) return model @BACKBONE_REGISTRY.register() def resnet50_ms_l123(pretrained=True, **kwargs): from dassl.modeling.ops import MixStyle model = ResNet( block=Bottleneck, layers=[3, 4, 6, 3], ms_class=MixStyle, ms_layers=["layer1", "layer2", "layer3"], ) if pretrained: init_pretrained_weights(model, model_urls["resnet50"]) return model @BACKBONE_REGISTRY.register() def resnet50_ms_l12(pretrained=True, **kwargs): from dassl.modeling.ops import MixStyle model = ResNet( block=Bottleneck, layers=[3, 4, 6, 3], ms_class=MixStyle, ms_layers=["layer1", "layer2"], ) if pretrained: init_pretrained_weights(model, model_urls["resnet50"]) return model @BACKBONE_REGISTRY.register() def resnet50_ms_l1(pretrained=True, **kwargs): from dassl.modeling.ops import MixStyle model = ResNet( block=Bottleneck, layers=[3, 4, 6, 3], ms_class=MixStyle, ms_layers=["layer1"] ) if pretrained: init_pretrained_weights(model, model_urls["resnet50"]) return model @BACKBONE_REGISTRY.register() def resnet101_ms_l123(pretrained=True, **kwargs): from dassl.modeling.ops import MixStyle model = ResNet( block=Bottleneck, layers=[3, 4, 23, 3], ms_class=MixStyle, ms_layers=["layer1", "layer2", "layer3"], ) if pretrained: init_pretrained_weights(model, model_urls["resnet101"]) return model @BACKBONE_REGISTRY.register() def resnet101_ms_l12(pretrained=True, **kwargs): from dassl.modeling.ops import MixStyle model = ResNet( block=Bottleneck, layers=[3, 4, 23, 3], ms_class=MixStyle, ms_layers=["layer1", "layer2"], ) if pretrained: init_pretrained_weights(model, model_urls["resnet101"]) return model @BACKBONE_REGISTRY.register() def resnet101_ms_l1(pretrained=True, **kwargs): from dassl.modeling.ops import MixStyle model = ResNet( block=Bottleneck, layers=[3, 4, 23, 3], ms_class=MixStyle, ms_layers=["layer1"] ) if pretrained: init_pretrained_weights(model, model_urls["resnet101"]) return model """ Residual networks with efdmix """ @BACKBONE_REGISTRY.register() def resnet18_efdmix_l123(pretrained=True, **kwargs): from dassl.modeling.ops import EFDMix model = ResNet( block=BasicBlock, layers=[2, 2, 2, 2], ms_class=EFDMix, ms_layers=["layer1", "layer2", "layer3"], ) if pretrained: init_pretrained_weights(model, model_urls["resnet18"]) return model @BACKBONE_REGISTRY.register() def resnet18_efdmix_l12(pretrained=True, **kwargs): from dassl.modeling.ops import EFDMix model = ResNet( block=BasicBlock, layers=[2, 2, 2, 2], ms_class=EFDMix, ms_layers=["layer1", "layer2"], ) if pretrained: init_pretrained_weights(model, model_urls["resnet18"]) return model @BACKBONE_REGISTRY.register() def resnet18_efdmix_l1(pretrained=True, **kwargs): from dassl.modeling.ops import EFDMix model = ResNet( block=BasicBlock, layers=[2, 2, 2, 2], ms_class=EFDMix, ms_layers=["layer1"] ) if pretrained: init_pretrained_weights(model, model_urls["resnet18"]) return model @BACKBONE_REGISTRY.register() def resnet50_efdmix_l123(pretrained=True, **kwargs): from dassl.modeling.ops import EFDMix model = ResNet( block=Bottleneck, layers=[3, 4, 6, 3], ms_class=EFDMix, ms_layers=["layer1", "layer2", "layer3"], ) if pretrained: init_pretrained_weights(model, model_urls["resnet50"]) return model @BACKBONE_REGISTRY.register() def resnet50_efdmix_l12(pretrained=True, **kwargs): from dassl.modeling.ops import EFDMix model = ResNet( block=Bottleneck, layers=[3, 4, 6, 3], ms_class=EFDMix, ms_layers=["layer1", "layer2"], ) if pretrained: init_pretrained_weights(model, model_urls["resnet50"]) return model @BACKBONE_REGISTRY.register() def resnet50_efdmix_l1(pretrained=True, **kwargs): from dassl.modeling.ops import EFDMix model = ResNet( block=Bottleneck, layers=[3, 4, 6, 3], ms_class=EFDMix, ms_layers=["layer1"] ) if pretrained: init_pretrained_weights(model, model_urls["resnet50"]) return model @BACKBONE_REGISTRY.register() def resnet101_efdmix_l123(pretrained=True, **kwargs): from dassl.modeling.ops import EFDMix model = ResNet( block=Bottleneck, layers=[3, 4, 23, 3], ms_class=EFDMix, ms_layers=["layer1", "layer2", "layer3"], ) if pretrained: init_pretrained_weights(model, model_urls["resnet101"]) return model @BACKBONE_REGISTRY.register() def resnet101_efdmix_l12(pretrained=True, **kwargs): from dassl.modeling.ops import EFDMix model = ResNet( block=Bottleneck, layers=[3, 4, 23, 3], ms_class=EFDMix, ms_layers=["layer1", "layer2"], ) if pretrained: init_pretrained_weights(model, model_urls["resnet101"]) return model @BACKBONE_REGISTRY.register() def resnet101_efdmix_l1(pretrained=True, **kwargs): from dassl.modeling.ops import EFDMix model = ResNet( block=Bottleneck, layers=[3, 4, 23, 3], ms_class=EFDMix, ms_layers=["layer1"] ) if pretrained: init_pretrained_weights(model, model_urls["resnet101"]) return model