Dassl.pytorch/dassl/modeling/backbone/resnet_dynamic.py (589 lines of code) (raw):
"""
Dynamic ResNet from `"Dynamic Domain Generalization" <https://github.com/MetaVisionLab/DDG>`_.
"""
from typing import Any, List, Type, Union, Callable, Optional
from collections import OrderedDict
import torch
import torch.nn as nn
from torch import Tensor
from torch.hub import load_state_dict_from_url
from dassl.modeling.ops import MixStyle, Conv2dDynamic
from .build import BACKBONE_REGISTRY
from .backbone import Backbone
__all__ = [
"resnet18_dynamic", "resnet50_dynamic", "resnet101_dynamic",
"resnet18_dynamic_ms_l123", "resnet18_dynamic_ms_l12",
"resnet18_dynamic_ms_l1", "resnet50_dynamic_ms_l123",
"resnet50_dynamic_ms_l12", "resnet50_dynamic_ms_l1",
"resnet101_dynamic_ms_l123", "resnet101_dynamic_ms_l12",
"resnet101_dynamic_ms_l1"
]
model_urls = {
"resnet18_dynamic":
"https://csip.fzu.edu.cn/files/models/resnet18_dynamic-074db766.pth",
"resnet50_dynamic":
"https://csip.fzu.edu.cn/files/models/resnet50_dynamic-2c3b0201.pth",
"resnet101_dynamic":
"https://csip.fzu.edu.cn/files/models/resnet101_dynamic-c5f15780.pth",
}
def conv3x3(
in_planes: int,
out_planes: int,
stride: int = 1,
groups: int = 1,
dilation: int = 1
) -> nn.Conv2d:
"""3x3 convolution with padding"""
return nn.Conv2d(
in_planes,
out_planes,
kernel_size=3,
stride=stride,
padding=dilation,
groups=groups,
bias=False,
dilation=dilation
)
def conv3x3_dynamic(
in_planes: int,
out_planes: int,
stride: int = 1,
attention_in_channels: int = None
) -> Conv2dDynamic:
"""3x3 convolution with padding"""
return Conv2dDynamic(
in_planes,
out_planes,
kernel_size=3,
stride=stride,
padding=1,
bias=False,
attention_in_channels=attention_in_channels
)
def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d:
"""1x1 convolution"""
return nn.Conv2d(
in_planes, out_planes, kernel_size=1, stride=stride, bias=False
)
def load_state_dict(
model: nn.Module,
state_dict: "OrderedDict[str, Tensor]",
allowed_missing_keys: List = None
):
r"""Copies parameters and buffers from :attr:`state_dict` into
this module and its descendants. If :attr:`strict` is ``True``, then
the keys of :attr:`state_dict` must exactly match the keys returned
by this module's :meth:`~torch.nn.Module.state_dict` function.
Args:
model (torch.nn.Module): a torch.nn.Module object where state_dict load for.
state_dict (dict): a dict containing parameters and
persistent buffers.
allowed_missing_keys (List, optional): not raise `RuntimeError` if missing_keys
equal to allowed_missing_keys.
Returns:
``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields:
* **missing_keys** is a list of str containing the missing keys
* **unexpected_keys** is a list of str containing the unexpected keys
Note:
If a parameter or buffer is registered as ``None`` and its corresponding key
exists in :attr:`state_dict`, :meth:`load_state_dict` will raise a
``RuntimeError``.
"""
missing_keys, unexpected_keys = model.load_state_dict(
state_dict, strict=allowed_missing_keys is None
)
msgs: List[str] = []
raise_error = False
if len(unexpected_keys) > 0:
raise_error = True
msgs.insert(
0, "Unexpected key(s) in state_dict: {}. ".format(
", ".join("'{}'".format(k) for k in unexpected_keys)
)
)
if len(missing_keys) > 0:
if allowed_missing_keys is None or sorted(missing_keys) != sorted(
allowed_missing_keys
):
raise_error = True
msgs.insert(
0, "Missing key(s) in state_dict: {}. ".format(
", ".join("'{}'".format(k) for k in missing_keys)
)
)
if raise_error:
raise RuntimeError(
"Error(s) in loading state_dict for {}:\n\t{}".format(
model.__class__.__name__, "\n\t".join(msgs)
)
)
if len(msgs) > 0:
print(
"\nInfo(s) in loading state_dict for {}:\n\t{}".format(
model.__class__.__name__, "\n\t".join(msgs)
)
)
class BasicBlock(nn.Module):
expansion: int = 1
def __init__(
self,
inplanes: int,
planes: int,
stride: int = 1,
downsample: Optional[nn.Module] = None,
groups: int = 1,
base_width: int = 64,
dilation: int = 1,
norm_layer: Optional[Callable[..., nn.Module]] = None
) -> None:
super(BasicBlock, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError(
"BasicBlock only supports groups=1 and base_width=64"
)
if dilation > 1:
raise NotImplementedError(
"Dilation > 1 not supported in BasicBlock"
)
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = norm_layer(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x: Tensor) -> Tensor:
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class Bottleneck(nn.Module):
# Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
# while original implementation places the stride at the first 1x1 convolution(self.conv1)
# according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
# This variant is also known as ResNet V1.5 and improves accuracy according to
# https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
expansion: int = 4
def __init__(
self,
inplanes: int,
planes: int,
stride: int = 1,
downsample: Optional[nn.Module] = None,
groups: int = 1,
base_width: int = 64,
dilation: int = 1,
norm_layer: Optional[Callable[..., nn.Module]] = None
) -> None:
super(Bottleneck, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
width = int(planes * (base_width/64.)) * groups
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv1x1(inplanes, width)
self.bn1 = norm_layer(width)
self.conv2 = conv3x3(width, width, stride, groups, dilation)
self.bn2 = norm_layer(width)
self.conv3 = conv1x1(width, planes * self.expansion)
self.bn3 = norm_layer(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x: Tensor) -> Tensor:
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class BasicBlockDynamic(nn.Module):
expansion: int = 1
def __init__(
self,
inplanes: int,
planes: int,
stride: int = 1,
downsample: Optional[nn.Module] = None,
groups: int = 1,
base_width: int = 64,
dilation: int = 1,
norm_layer: Optional[Callable[..., nn.Module]] = None
) -> None:
super(BasicBlockDynamic, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError(
"BasicBlock only supports groups=1 and base_width=64"
)
if dilation > 1:
raise NotImplementedError(
"Dilation > 1 not supported in BasicBlock"
)
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv3x3_dynamic(
inplanes, planes, stride, attention_in_channels=inplanes
)
self.bn1 = norm_layer(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3_dynamic(
planes, planes, attention_in_channels=inplanes
)
self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x: Tensor) -> Tensor:
identity = x
out = self.conv1(x, attention_x=x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out, attention_x=x)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class BottleneckDynamic(nn.Module):
# Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
# while original implementation places the stride at the first 1x1 convolution(self.conv1)
# according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
# This variant is also known as ResNet V1.5 and improves accuracy according to
# https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
expansion: int = 4
def __init__(
self,
inplanes: int,
planes: int,
stride: int = 1,
downsample: Optional[nn.Module] = None,
groups: int = 1,
base_width: int = 64,
dilation: int = 1,
norm_layer: Optional[Callable[..., nn.Module]] = None
) -> None:
super(BottleneckDynamic, self).__init__()
if groups != 1:
raise ValueError("BottleneckDynamic only supports groups=1")
if dilation > 1:
raise NotImplementedError(
"Dilation > 1 not supported in BottleneckDynamic"
)
if norm_layer is None:
norm_layer = nn.BatchNorm2d
width = int(planes * (base_width/64.)) * groups
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv1x1(inplanes, width)
self.bn1 = norm_layer(width)
self.conv2 = conv3x3_dynamic(
width, width, stride, attention_in_channels=inplanes
)
self.bn2 = norm_layer(width)
self.conv3 = conv1x1(width, planes * self.expansion)
self.bn3 = norm_layer(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x: Tensor) -> Tensor:
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out, attention_x=x)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(Backbone):
def __init__(
self,
block: Type[Union[BasicBlock, Bottleneck, BasicBlockDynamic,
BottleneckDynamic]],
layers: List[int],
has_fc: bool = True,
num_classes: int = 1000,
zero_init_residual: bool = False,
groups: int = 1,
width_per_group: int = 64,
replace_stride_with_dilation: Optional[List[bool]] = None,
norm_layer: Optional[Callable[..., nn.Module]] = None,
ms_class=None,
ms_layers=None,
ms_p=0.5,
ms_a=0.1
) -> None:
super(ResNet, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self._norm_layer = norm_layer
self.inplanes = 64
self.dilation = 1
if replace_stride_with_dilation is None:
# each element in the tuple indicates if we should replace
# the 2x2 stride with a dilated convolution instead
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError(
"replace_stride_with_dilation should be None "
"or a 3-element tuple, got {}".
format(replace_stride_with_dilation)
)
self.groups = groups
self.base_width = width_per_group
self.conv1 = nn.Conv2d(
3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False
)
self.bn1 = norm_layer(self.inplanes)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(
block,
128,
layers[1],
stride=2,
dilate=replace_stride_with_dilation[0]
)
self.layer3 = self._make_layer(
block,
256,
layers[2],
stride=2,
dilate=replace_stride_with_dilation[1]
)
self.layer4 = self._make_layer(
block,
512,
layers[3],
stride=2,
dilate=replace_stride_with_dilation[2]
)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.has_fc = has_fc
self._out_features = 512 * block.expansion
if has_fc:
self.fc = nn.Linear(self.out_features, num_classes)
self._out_features = num_classes
if ms_class is not None and ms_layers is not None:
self.ms_class = ms_class(p=ms_p, alpha=ms_a)
for layer in ms_layers:
assert layer in ["layer1", "layer2", "layer3"]
self.ms_layers = ms_layers
else:
self.ms_class = None
self.ms_layers = []
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(
m.weight, mode="fan_out", nonlinearity="relu"
)
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0)
def _make_layer(
self,
block: Type[Union[BasicBlock, Bottleneck]],
planes: int,
blocks: int,
stride: int = 1,
dilate: bool = False
) -> nn.Sequential:
norm_layer = self._norm_layer
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
norm_layer(planes * block.expansion),
)
layers = []
layers.append(
block(
self.inplanes, planes, stride, downsample, self.groups,
self.base_width, previous_dilation, norm_layer
)
)
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(
block(
self.inplanes,
planes,
groups=self.groups,
base_width=self.base_width,
dilation=self.dilation,
norm_layer=norm_layer
)
)
return nn.Sequential(*layers)
def _forward_impl(self, x: Tensor) -> Tensor:
# See note [TorchScript super()]
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
if "layer1" in self.ms_layers:
x = self.ms_class(x)
x = self.layer2(x)
if "layer2" in self.ms_layers:
x = self.ms_class(x)
x = self.layer3(x)
if "layer3" in self.ms_layers:
x = self.ms_class(x)
x = self.layer4(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
if self.has_fc:
x = self.fc(x)
return x
def forward(self, x: Tensor) -> Tensor:
return self._forward_impl(x)
def _resnet(
arch: str, block: Type[Union[BasicBlock, Bottleneck, BasicBlockDynamic,
BottleneckDynamic]], layers: List[int],
pretrained: bool, progress: bool, **kwargs: Any
) -> ResNet:
model = ResNet(block, layers, **kwargs)
if pretrained:
state_dict = load_state_dict_from_url(
model_urls[arch], progress=progress
)
# remove useless keys from sate_dict 1. no fc; 2. out_features != 1000.
removed_keys = model.has_fc is False or (
model.has_fc is True and model.out_features != 1000
)
removed_keys = ["fc.weight", "fc.bias"] if removed_keys else []
for key in removed_keys:
state_dict.pop(key)
# if has fc, then allow missing key, else strict load state_dict.
allowed_missing_keys = removed_keys if model.has_fc else None
load_state_dict(model, state_dict, allowed_missing_keys)
return model
@BACKBONE_REGISTRY.register()
def resnet18_dynamic(pretrained=True, **kwargs) -> ResNet:
model = _resnet(
"resnet18_dynamic",
BasicBlockDynamic, [2, 2, 2, 2],
pretrained=pretrained,
progress=True,
has_fc=False
)
return model
@BACKBONE_REGISTRY.register()
def resnet50_dynamic(pretrained=True, **kwargs) -> ResNet:
model = _resnet(
"resnet50_dynamic",
BottleneckDynamic, [3, 4, 6, 3],
pretrained=pretrained,
progress=True,
has_fc=False
)
return model
@BACKBONE_REGISTRY.register()
def resnet101_dynamic(pretrained=True, **kwargs) -> ResNet:
model = _resnet(
"resnet101_dynamic",
BottleneckDynamic, [3, 4, 23, 3],
pretrained=pretrained,
progress=True,
has_fc=False
)
return model
@BACKBONE_REGISTRY.register()
def resnet18_dynamic_ms_l123(pretrained=True, **kwargs) -> ResNet:
model = _resnet(
"resnet18_dynamic",
BasicBlockDynamic, [2, 2, 2, 2],
pretrained=pretrained,
progress=True,
has_fc=False,
ms_class=MixStyle,
ms_layers=["layer1", "layer2", "layer3"]
)
return model
@BACKBONE_REGISTRY.register()
def resnet18_dynamic_ms_l12(pretrained=True, **kwargs) -> ResNet:
model = _resnet(
"resnet18_dynamic",
BasicBlockDynamic, [2, 2, 2, 2],
pretrained=pretrained,
progress=True,
has_fc=False,
ms_class=MixStyle,
ms_layers=["layer1", "layer2"]
)
return model
@BACKBONE_REGISTRY.register()
def resnet18_dynamic_ms_l1(pretrained=True, **kwargs) -> ResNet:
model = _resnet(
"resnet18_dynamic",
BasicBlockDynamic, [2, 2, 2, 2],
pretrained=pretrained,
progress=True,
has_fc=False,
ms_class=MixStyle,
ms_layers=["layer1"]
)
return model
@BACKBONE_REGISTRY.register()
def resnet50_dynamic_ms_l123(pretrained=True, **kwargs) -> ResNet:
model = _resnet(
"resnet50_dynamic",
BottleneckDynamic, [3, 4, 6, 3],
pretrained=pretrained,
progress=True,
has_fc=False,
ms_class=MixStyle,
ms_layers=["layer1", "layer2", "layer3"]
)
return model
@BACKBONE_REGISTRY.register()
def resnet50_dynamic_ms_l12(pretrained=True, **kwargs) -> ResNet:
model = _resnet(
"resnet50_dynamic",
BottleneckDynamic, [3, 4, 6, 3],
pretrained=pretrained,
progress=True,
has_fc=False,
ms_class=MixStyle,
ms_layers=["layer1", "layer2"]
)
return model
@BACKBONE_REGISTRY.register()
def resnet50_dynamic_ms_l1(pretrained=True, **kwargs) -> ResNet:
model = _resnet(
"resnet50_dynamic",
BottleneckDynamic, [3, 4, 6, 3],
pretrained=pretrained,
progress=True,
has_fc=False,
ms_class=MixStyle,
ms_layers=["layer1"]
)
return model
@BACKBONE_REGISTRY.register()
def resnet101_dynamic_ms_l123(pretrained=True, **kwargs) -> ResNet:
model = _resnet(
"resnet101_dynamic",
BottleneckDynamic, [3, 4, 23, 3],
pretrained=pretrained,
progress=True,
has_fc=False,
ms_class=MixStyle,
ms_layers=["layer1", "layer2", "layer3"]
)
return model
@BACKBONE_REGISTRY.register()
def resnet101_dynamic_ms_l12(pretrained=True, **kwargs) -> ResNet:
model = _resnet(
"resnet101_dynamic",
BottleneckDynamic, [3, 4, 23, 3],
pretrained=pretrained,
progress=True,
has_fc=False,
ms_class=MixStyle,
ms_layers=["layer1", "layer2"]
)
return model
@BACKBONE_REGISTRY.register()
def resnet101_dynamic_ms_l1(pretrained=True, **kwargs) -> ResNet:
model = _resnet(
"resnet101_dynamic",
BottleneckDynamic, [3, 4, 23, 3],
pretrained=pretrained,
progress=True,
has_fc=False,
ms_class=MixStyle,
ms_layers=["layer1"]
)
return model