Dassl.pytorch/dassl/modeling/backbone/vgg.py (128 lines of code) (raw):

import torch import torch.nn as nn from .build import BACKBONE_REGISTRY from .backbone import Backbone try: from torch.hub import load_state_dict_from_url except ImportError: from torch.utils.model_zoo import load_url as load_state_dict_from_url model_urls = { "vgg11": "https://download.pytorch.org/models/vgg11-bbd30ac9.pth", "vgg13": "https://download.pytorch.org/models/vgg13-c768596a.pth", "vgg16": "https://download.pytorch.org/models/vgg16-397923af.pth", "vgg19": "https://download.pytorch.org/models/vgg19-dcbb9e9d.pth", "vgg11_bn": "https://download.pytorch.org/models/vgg11_bn-6002323d.pth", "vgg13_bn": "https://download.pytorch.org/models/vgg13_bn-abd245e5.pth", "vgg16_bn": "https://download.pytorch.org/models/vgg16_bn-6c64b313.pth", "vgg19_bn": "https://download.pytorch.org/models/vgg19_bn-c79401a0.pth", } class VGG(Backbone): def __init__(self, features, init_weights=True): super().__init__() self.features = features self.avgpool = nn.AdaptiveAvgPool2d((7, 7)) # Note that self.classifier outputs features rather than logits self.classifier = nn.Sequential( nn.Linear(512 * 7 * 7, 4096), nn.ReLU(True), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(True), nn.Dropout(), ) self._out_features = 4096 if init_weights: self._initialize_weights() def forward(self, x): x = self.features(x) x = self.avgpool(x) x = torch.flatten(x, 1) return self.classifier(x) def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_( m.weight, mode="fan_out", nonlinearity="relu" ) if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.constant_(m.bias, 0) def make_layers(cfg, batch_norm=False): layers = [] in_channels = 3 for v in cfg: if v == "M": layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] else: layers += [conv2d, nn.ReLU(inplace=True)] in_channels = v return nn.Sequential(*layers) cfgs = { "A": [64, "M", 128, "M", 256, 256, "M", 512, 512, "M", 512, 512, "M"], "B": [64, 64, "M", 128, 128, "M", 256, 256, "M", 512, 512, "M", 512, 512, "M"], "D": [ 64, 64, "M", 128, 128, "M", 256, 256, 256, "M", 512, 512, 512, "M", 512, 512, 512, "M", ], "E": [ 64, 64, "M", 128, 128, "M", 256, 256, 256, 256, "M", 512, 512, 512, 512, "M", 512, 512, 512, 512, "M", ], } def _vgg(arch, cfg, batch_norm, pretrained): init_weights = False if pretrained else True model = VGG( make_layers(cfgs[cfg], batch_norm=batch_norm), init_weights=init_weights ) if pretrained: state_dict = load_state_dict_from_url(model_urls[arch], progress=True) model.load_state_dict(state_dict, strict=False) return model @BACKBONE_REGISTRY.register() def vgg16(pretrained=True, **kwargs): return _vgg("vgg16", "D", False, pretrained)