Dassl.pytorch/dassl/modeling/backbone/wide_resnet.py (122 lines of code) (raw):

""" Modified from https://github.com/xternalz/WideResNet-pytorch """ import torch import torch.nn as nn import torch.nn.functional as F from .build import BACKBONE_REGISTRY from .backbone import Backbone class BasicBlock(nn.Module): def __init__(self, in_planes, out_planes, stride, dropRate=0.0): super().__init__() self.bn1 = nn.BatchNorm2d(in_planes) self.relu1 = nn.LeakyReLU(0.01, inplace=True) self.conv1 = nn.Conv2d( in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False ) self.bn2 = nn.BatchNorm2d(out_planes) self.relu2 = nn.LeakyReLU(0.01, inplace=True) self.conv2 = nn.Conv2d( out_planes, out_planes, kernel_size=3, stride=1, padding=1, bias=False ) self.droprate = dropRate self.equalInOut = in_planes == out_planes self.convShortcut = ( (not self.equalInOut) and nn.Conv2d( in_planes, out_planes, kernel_size=1, stride=stride, padding=0, bias=False, ) or None ) def forward(self, x): if not self.equalInOut: x = self.relu1(self.bn1(x)) else: out = self.relu1(self.bn1(x)) out = self.relu2(self.bn2(self.conv1(out if self.equalInOut else x))) if self.droprate > 0: out = F.dropout(out, p=self.droprate, training=self.training) out = self.conv2(out) return torch.add(x if self.equalInOut else self.convShortcut(x), out) class NetworkBlock(nn.Module): def __init__( self, nb_layers, in_planes, out_planes, block, stride, dropRate=0.0 ): super().__init__() self.layer = self._make_layer( block, in_planes, out_planes, nb_layers, stride, dropRate ) def _make_layer( self, block, in_planes, out_planes, nb_layers, stride, dropRate ): layers = [] for i in range(int(nb_layers)): layers.append( block( i == 0 and in_planes or out_planes, out_planes, i == 0 and stride or 1, dropRate, ) ) return nn.Sequential(*layers) def forward(self, x): return self.layer(x) class WideResNet(Backbone): def __init__(self, depth, widen_factor, dropRate=0.0): super().__init__() nChannels = [ 16, 16 * widen_factor, 32 * widen_factor, 64 * widen_factor ] assert (depth-4) % 6 == 0 n = (depth-4) / 6 block = BasicBlock # 1st conv before any network block self.conv1 = nn.Conv2d( 3, nChannels[0], kernel_size=3, stride=1, padding=1, bias=False ) # 1st block self.block1 = NetworkBlock( n, nChannels[0], nChannels[1], block, 1, dropRate ) # 2nd block self.block2 = NetworkBlock( n, nChannels[1], nChannels[2], block, 2, dropRate ) # 3rd block self.block3 = NetworkBlock( n, nChannels[2], nChannels[3], block, 2, dropRate ) # global average pooling and classifier self.bn1 = nn.BatchNorm2d(nChannels[3]) self.relu = nn.LeakyReLU(0.01, inplace=True) self._out_features = nChannels[3] for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_( m.weight, mode="fan_out", nonlinearity="relu" ) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear): m.bias.data.zero_() def forward(self, x): out = self.conv1(x) out = self.block1(out) out = self.block2(out) out = self.block3(out) out = self.relu(self.bn1(out)) out = F.adaptive_avg_pool2d(out, 1) return out.view(out.size(0), -1) @BACKBONE_REGISTRY.register() def wide_resnet_28_2(**kwargs): return WideResNet(28, 2) @BACKBONE_REGISTRY.register() def wide_resnet_16_4(**kwargs): return WideResNet(16, 4)