Dassl.pytorch/dassl/modeling/ops/mixstyle.py (78 lines of code) (raw):
import random
from contextlib import contextmanager
import torch
import torch.nn as nn
def deactivate_mixstyle(m):
if type(m) == MixStyle:
m.set_activation_status(False)
def activate_mixstyle(m):
if type(m) == MixStyle:
m.set_activation_status(True)
def random_mixstyle(m):
if type(m) == MixStyle:
m.update_mix_method("random")
def crossdomain_mixstyle(m):
if type(m) == MixStyle:
m.update_mix_method("crossdomain")
@contextmanager
def run_without_mixstyle(model):
# Assume MixStyle was initially activated
try:
model.apply(deactivate_mixstyle)
yield
finally:
model.apply(activate_mixstyle)
@contextmanager
def run_with_mixstyle(model, mix=None):
# Assume MixStyle was initially deactivated
if mix == "random":
model.apply(random_mixstyle)
elif mix == "crossdomain":
model.apply(crossdomain_mixstyle)
try:
model.apply(activate_mixstyle)
yield
finally:
model.apply(deactivate_mixstyle)
class MixStyle(nn.Module):
"""MixStyle.
Reference:
Zhou et al. Domain Generalization with MixStyle. ICLR 2021.
"""
def __init__(self, p=0.5, alpha=0.1, eps=1e-6, mix="random"):
"""
Args:
p (float): probability of using MixStyle.
alpha (float): parameter of the Beta distribution.
eps (float): scaling parameter to avoid numerical issues.
mix (str): how to mix.
"""
super().__init__()
self.p = p
self.beta = torch.distributions.Beta(alpha, alpha)
self.eps = eps
self.alpha = alpha
self.mix = mix
self._activated = True
def __repr__(self):
return (
f"MixStyle(p={self.p}, alpha={self.alpha}, eps={self.eps}, mix={self.mix})"
)
def set_activation_status(self, status=True):
self._activated = status
def update_mix_method(self, mix="random"):
self.mix = mix
def forward(self, x):
if not self.training or not self._activated:
return x
if random.random() > self.p:
return x
B = x.size(0)
mu = x.mean(dim=[2, 3], keepdim=True)
var = x.var(dim=[2, 3], keepdim=True)
sig = (var + self.eps).sqrt()
mu, sig = mu.detach(), sig.detach()
x_normed = (x-mu) / sig
lmda = self.beta.sample((B, 1, 1, 1))
lmda = lmda.to(x.device)
if self.mix == "random":
# random shuffle
perm = torch.randperm(B)
elif self.mix == "crossdomain":
# split into two halves and swap the order
perm = torch.arange(B - 1, -1, -1) # inverse index
perm_b, perm_a = perm.chunk(2)
perm_b = perm_b[torch.randperm(perm_b.shape[0])]
perm_a = perm_a[torch.randperm(perm_a.shape[0])]
perm = torch.cat([perm_b, perm_a], 0)
else:
raise NotImplementedError
mu2, sig2 = mu[perm], sig[perm]
mu_mix = mu*lmda + mu2 * (1-lmda)
sig_mix = sig*lmda + sig2 * (1-lmda)
return x_normed*sig_mix + mu_mix