Dassl.pytorch/dassl/modeling/ops/utils.py (28 lines of code) (raw):
import numpy as np
import torch
def sharpen_prob(p, temperature=2):
"""Sharpening probability with a temperature.
Args:
p (torch.Tensor): probability matrix (batch_size, n_classes)
temperature (float): temperature.
"""
p = p.pow(temperature)
return p / p.sum(1, keepdim=True)
def reverse_index(data, label):
"""Reverse order."""
inv_idx = torch.arange(data.size(0) - 1, -1, -1).long()
return data[inv_idx], label[inv_idx]
def shuffle_index(data, label):
"""Shuffle order."""
rnd_idx = torch.randperm(data.shape[0])
return data[rnd_idx], label[rnd_idx]
def create_onehot(label, num_classes):
"""Create one-hot tensor.
We suggest using nn.functional.one_hot.
Args:
label (torch.Tensor): 1-D tensor.
num_classes (int): number of classes.
"""
onehot = torch.zeros(label.shape[0], num_classes)
onehot = onehot.scatter(1, label.unsqueeze(1).data.cpu(), 1)
onehot = onehot.to(label.device)
return onehot
def sigmoid_rampup(current, rampup_length):
"""Exponential rampup.
Args:
current (int): current step.
rampup_length (int): maximum step.
"""
assert rampup_length > 0
current = np.clip(current, 0.0, rampup_length)
phase = 1.0 - current/rampup_length
return float(np.exp(-5.0 * phase * phase))
def linear_rampup(current, rampup_length):
"""Linear rampup.
Args:
current (int): current step.
rampup_length (int): maximum step.
"""
assert rampup_length > 0
ratio = np.clip(current / rampup_length, 0.0, 1.0)
return float(ratio)
def ema_model_update(model, ema_model, alpha):
"""Exponential moving average of model parameters.
Args:
model (nn.Module): model being trained.
ema_model (nn.Module): ema of the model.
alpha (float): ema decay rate.
"""
for ema_param, param in zip(ema_model.parameters(), model.parameters()):
ema_param.data.mul_(alpha).add_(param.data, alpha=1 - alpha)