Dassl.pytorch/dassl/optim/radam.py (260 lines of code) (raw):
"""
Imported from: https://github.com/LiyuanLucasLiu/RAdam
https://arxiv.org/abs/1908.03265
@article{liu2019radam,
title={On the Variance of the Adaptive Learning Rate and Beyond},
author={Liu, Liyuan and Jiang, Haoming and He, Pengcheng and Chen, Weizhu and Liu, Xiaodong and Gao, Jianfeng and Han, Jiawei},
journal={arXiv preprint arXiv:1908.03265},
year={2019}
}
"""
import math
import torch
from torch.optim.optimizer import Optimizer
class RAdam(Optimizer):
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
degenerated_to_sgd=True,
):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError(
"Invalid beta parameter at index 0: {}".format(betas[0])
)
if not 0.0 <= betas[1] < 1.0:
raise ValueError(
"Invalid beta parameter at index 1: {}".format(betas[1])
)
self.degenerated_to_sgd = degenerated_to_sgd
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
self.buffer = [[None, None, None] for ind in range(10)]
super(RAdam, self).__init__(params, defaults)
def __setstate__(self, state):
super(RAdam, self).__setstate__(state)
def step(self, closure=None):
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad.data.float()
if grad.is_sparse:
raise RuntimeError(
"RAdam does not support sparse gradients"
)
p_data_fp32 = p.data.float()
state = self.state[p]
if len(state) == 0:
state["step"] = 0
state["exp_avg"] = torch.zeros_like(p_data_fp32)
state["exp_avg_sq"] = torch.zeros_like(p_data_fp32)
else:
state["exp_avg"] = state["exp_avg"].type_as(p_data_fp32)
state["exp_avg_sq"] = state["exp_avg_sq"].type_as(
p_data_fp32
)
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
beta1, beta2 = group["betas"]
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
exp_avg.mul_(beta1).add_(1 - beta1, grad)
state["step"] += 1
buffered = self.buffer[int(state["step"] % 10)]
if state["step"] == buffered[0]:
N_sma, step_size = buffered[1], buffered[2]
else:
buffered[0] = state["step"]
beta2_t = beta2**state["step"]
N_sma_max = 2 / (1-beta2) - 1
N_sma = N_sma_max - 2 * state["step"
] * beta2_t / (1-beta2_t)
buffered[1] = N_sma
# more conservative since it's an approximated value
if N_sma >= 5:
step_size = math.sqrt(
(1-beta2_t) * (N_sma-4) / (N_sma_max-4) *
(N_sma-2) / N_sma * N_sma_max / (N_sma_max-2)
) / (1 - beta1**state["step"])
elif self.degenerated_to_sgd:
step_size = 1.0 / (1 - beta1**state["step"])
else:
step_size = -1
buffered[2] = step_size
# more conservative since it's an approximated value
if N_sma >= 5:
if group["weight_decay"] != 0:
p_data_fp32.add_(
-group["weight_decay"] * group["lr"], p_data_fp32
)
denom = exp_avg_sq.sqrt().add_(group["eps"])
p_data_fp32.addcdiv_(
-step_size * group["lr"], exp_avg, denom
)
p.data.copy_(p_data_fp32)
elif step_size > 0:
if group["weight_decay"] != 0:
p_data_fp32.add_(
-group["weight_decay"] * group["lr"], p_data_fp32
)
p_data_fp32.add_(-step_size * group["lr"], exp_avg)
p.data.copy_(p_data_fp32)
return loss
class PlainRAdam(Optimizer):
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
degenerated_to_sgd=True,
):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError(
"Invalid beta parameter at index 0: {}".format(betas[0])
)
if not 0.0 <= betas[1] < 1.0:
raise ValueError(
"Invalid beta parameter at index 1: {}".format(betas[1])
)
self.degenerated_to_sgd = degenerated_to_sgd
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
super(PlainRAdam, self).__init__(params, defaults)
def __setstate__(self, state):
super(PlainRAdam, self).__setstate__(state)
def step(self, closure=None):
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad.data.float()
if grad.is_sparse:
raise RuntimeError(
"RAdam does not support sparse gradients"
)
p_data_fp32 = p.data.float()
state = self.state[p]
if len(state) == 0:
state["step"] = 0
state["exp_avg"] = torch.zeros_like(p_data_fp32)
state["exp_avg_sq"] = torch.zeros_like(p_data_fp32)
else:
state["exp_avg"] = state["exp_avg"].type_as(p_data_fp32)
state["exp_avg_sq"] = state["exp_avg_sq"].type_as(
p_data_fp32
)
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
beta1, beta2 = group["betas"]
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
exp_avg.mul_(beta1).add_(1 - beta1, grad)
state["step"] += 1
beta2_t = beta2**state["step"]
N_sma_max = 2 / (1-beta2) - 1
N_sma = N_sma_max - 2 * state["step"] * beta2_t / (1-beta2_t)
# more conservative since it's an approximated value
if N_sma >= 5:
if group["weight_decay"] != 0:
p_data_fp32.add_(
-group["weight_decay"] * group["lr"], p_data_fp32
)
step_size = (
group["lr"] * math.sqrt(
(1-beta2_t) * (N_sma-4) / (N_sma_max-4) *
(N_sma-2) / N_sma * N_sma_max / (N_sma_max-2)
) / (1 - beta1**state["step"])
)
denom = exp_avg_sq.sqrt().add_(group["eps"])
p_data_fp32.addcdiv_(-step_size, exp_avg, denom)
p.data.copy_(p_data_fp32)
elif self.degenerated_to_sgd:
if group["weight_decay"] != 0:
p_data_fp32.add_(
-group["weight_decay"] * group["lr"], p_data_fp32
)
step_size = group["lr"] / (1 - beta1**state["step"])
p_data_fp32.add_(-step_size, exp_avg)
p.data.copy_(p_data_fp32)
return loss
class AdamW(Optimizer):
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
warmup=0
):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError(
"Invalid beta parameter at index 0: {}".format(betas[0])
)
if not 0.0 <= betas[1] < 1.0:
raise ValueError(
"Invalid beta parameter at index 1: {}".format(betas[1])
)
defaults = dict(
lr=lr,
betas=betas,
eps=eps,
weight_decay=weight_decay,
warmup=warmup
)
super(AdamW, self).__init__(params, defaults)
def __setstate__(self, state):
super(AdamW, self).__setstate__(state)
def step(self, closure=None):
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad.data.float()
if grad.is_sparse:
raise RuntimeError(
"Adam does not support sparse gradients, please consider SparseAdam instead"
)
p_data_fp32 = p.data.float()
state = self.state[p]
if len(state) == 0:
state["step"] = 0
state["exp_avg"] = torch.zeros_like(p_data_fp32)
state["exp_avg_sq"] = torch.zeros_like(p_data_fp32)
else:
state["exp_avg"] = state["exp_avg"].type_as(p_data_fp32)
state["exp_avg_sq"] = state["exp_avg_sq"].type_as(
p_data_fp32
)
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
beta1, beta2 = group["betas"]
state["step"] += 1
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
exp_avg.mul_(beta1).add_(1 - beta1, grad)
denom = exp_avg_sq.sqrt().add_(group["eps"])
bias_correction1 = 1 - beta1**state["step"]
bias_correction2 = 1 - beta2**state["step"]
if group["warmup"] > state["step"]:
scheduled_lr = 1e-8 + state["step"] * group["lr"] / group[
"warmup"]
else:
scheduled_lr = group["lr"]
step_size = (
scheduled_lr * math.sqrt(bias_correction2) /
bias_correction1
)
if group["weight_decay"] != 0:
p_data_fp32.add_(
-group["weight_decay"] * scheduled_lr, p_data_fp32
)
p_data_fp32.addcdiv_(-step_size, exp_avg, denom)
p.data.copy_(p_data_fp32)
return loss