Dassl.pytorch/dassl/utils/meters.py (42 lines of code) (raw):
from collections import defaultdict
import torch
__all__ = ["AverageMeter", "MetricMeter"]
class AverageMeter:
"""Compute and store the average and current value.
Examples::
>>> # 1. Initialize a meter to record loss
>>> losses = AverageMeter()
>>> # 2. Update meter after every mini-batch update
>>> losses.update(loss_value, batch_size)
"""
def __init__(self, ema=False):
"""
Args:
ema (bool, optional): apply exponential moving average.
"""
self.ema = ema
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
if isinstance(val, torch.Tensor):
val = val.item()
self.val = val
self.sum += val * n
self.count += n
if self.ema:
self.avg = self.avg * 0.9 + self.val * 0.1
else:
self.avg = self.sum / self.count
class MetricMeter:
"""Store the average and current value for a set of metrics.
Examples::
>>> # 1. Create an instance of MetricMeter
>>> metric = MetricMeter()
>>> # 2. Update using a dictionary as input
>>> input_dict = {'loss_1': value_1, 'loss_2': value_2}
>>> metric.update(input_dict)
>>> # 3. Convert to string and print
>>> print(str(metric))
"""
def __init__(self, delimiter=" "):
self.meters = defaultdict(AverageMeter)
self.delimiter = delimiter
def update(self, input_dict):
if input_dict is None:
return
if not isinstance(input_dict, dict):
raise TypeError(
"Input to MetricMeter.update() must be a dictionary"
)
for k, v in input_dict.items():
if isinstance(v, torch.Tensor):
v = v.item()
self.meters[k].update(v)
def __str__(self):
output_str = []
for name, meter in self.meters.items():
output_str.append(f"{name} {meter.val:.4f} ({meter.avg:.4f})")
return self.delimiter.join(output_str)