Dassl.pytorch/tools/parse_test_res.py (101 lines of code) (raw):
"""
Goal
---
1. Read test results from log.txt files
2. Compute mean and std across different folders (seeds)
Usage
---
Assume the output files are saved under output/my_experiment,
which contains results of different seeds, e.g.,
my_experiment/
seed1/
log.txt
seed2/
log.txt
seed3/
log.txt
Run the following command from the root directory:
$ python tools/parse_test_res.py output/my_experiment
Add --ci95 to the argument if you wanna get 95% confidence
interval instead of standard deviation:
$ python tools/parse_test_res.py output/my_experiment --ci95
If my_experiment/ has the following structure,
my_experiment/
exp-1/
seed1/
log.txt
...
seed2/
log.txt
...
seed3/
log.txt
...
exp-2/
...
exp-3/
...
Run
$ python tools/parse_test_res.py output/my_experiment --multi-exp
"""
import re
import numpy as np
import os.path as osp
import argparse
from collections import OrderedDict, defaultdict
from dassl.utils import check_isfile, listdir_nohidden
def compute_ci95(res):
return 1.96 * np.std(res) / np.sqrt(len(res))
def parse_function(*metrics, directory="", args=None, end_signal=None):
print("===")
print(f"Parsing files in {directory}")
subdirs = listdir_nohidden(directory, sort=True)
outputs = []
for subdir in subdirs:
fpath = osp.join(directory, subdir, "log.txt")
assert check_isfile(fpath)
good_to_go = False
output = OrderedDict()
with open(fpath, "r") as f:
lines = f.readlines()
for line in lines:
line = line.strip()
if line == end_signal:
good_to_go = True
for metric in metrics:
match = metric["regex"].search(line)
if match and good_to_go:
if "file" not in output:
output["file"] = fpath
num = float(match.group(1))
name = metric["name"]
output[name] = num
if output:
outputs.append(output)
assert len(outputs) > 0, f"Nothing found in {directory}"
metrics_results = defaultdict(list)
for output in outputs:
msg = ""
for key, value in output.items():
if isinstance(value, float):
msg += f"{key}: {value:.1f}%. "
else:
msg += f"{key}: {value}. "
if key != "file":
metrics_results[key].append(value)
print(msg)
output_results = OrderedDict()
for key, values in metrics_results.items():
avg = np.mean(values)
std = compute_ci95(values) if args.ci95 else np.std(values)
print(f"* average {key}: {avg:.1f}% +- {std:.1f}%")
output_results[key] = avg
print("===")
return output_results
def main(args, end_signal):
metric = {
"name": args.keyword,
"regex": re.compile(fr"\* {args.keyword}: ([\.\deE+-]+)%"),
}
if args.multi_exp:
final_results = defaultdict(list)
for directory in listdir_nohidden(args.directory, sort=True):
directory = osp.join(args.directory, directory)
results = parse_function(
metric, directory=directory, args=args, end_signal=end_signal
)
for key, value in results.items():
final_results[key].append(value)
print("Average performance")
for key, values in final_results.items():
avg = np.mean(values)
print(f"* {key}: {avg:.1f}%")
else:
parse_function(
metric, directory=args.directory, args=args, end_signal=end_signal
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("directory", type=str, help="path to directory")
parser.add_argument(
"--ci95",
action="store_true",
help=r"compute 95\% confidence interval"
)
parser.add_argument(
"--test-log", action="store_true", help="parse test-only logs"
)
parser.add_argument(
"--multi-exp", action="store_true", help="parse multiple experiments"
)
parser.add_argument(
"--keyword",
default="accuracy",
type=str,
help="which keyword to extract"
)
args = parser.parse_args()
end_signal = "Finish training" # needs to be adapted to the latest
if args.test_log:
end_signal = "=> result"
main(args, end_signal)