datasets/cifar_.py (70 lines of code) (raw):

import os import pickle from collections import OrderedDict from dassl.data.datasets import DATASET_REGISTRY, Datum, DatasetBase from dassl.utils import listdir_nohidden, mkdir_if_missing from .oxford_pets import OxfordPets @DATASET_REGISTRY.register() class CIFAR10_(DatasetBase): dataset_dir = "SCOOD/data/images" dataset_name = 'cifar10' def __init__(self, cfg): root = os.path.abspath(os.path.expanduser(cfg.DATASET.ROOT)) self.dataset_dir = os.path.join(root, self.dataset_dir) self.image_dir = os.path.join(self.dataset_dir, self.dataset_name) self.preprocessed = os.path.join(self.image_dir, "preprocessed.pkl") self.split_fewshot_dir = os.path.join(self.image_dir, "split_fewshot") mkdir_if_missing(self.split_fewshot_dir) if os.path.exists(self.preprocessed): with open(self.preprocessed, "rb") as f: preprocessed = pickle.load(f) train = preprocessed["train"] test = preprocessed["test"] else: classnames = self.load_classnames() train = self.read_data(classnames, "train") # Follow standard practice to perform evaluation on the val set # Also used as the val set (so evaluate the last-step model) test = self.read_data(classnames, "test") preprocessed = {"train": train, "test": test} with open(self.preprocessed, "wb") as f: pickle.dump(preprocessed, f, protocol=pickle.HIGHEST_PROTOCOL) num_shots = cfg.DATASET.NUM_SHOTS if num_shots >= 1: seed = cfg.SEED preprocessed = os.path.join(self.split_fewshot_dir, f"shot_{num_shots}-seed_{seed}.pkl") if os.path.exists(preprocessed): print(f"Loading preprocessed few-shot data from {preprocessed}") with open(preprocessed, "rb") as file: data = pickle.load(file) train = data["train"] else: train = self.generate_fewshot_dataset(train, num_shots=num_shots) data = {"train": train} print(f"Saving preprocessed few-shot data to {preprocessed}") with open(preprocessed, "wb") as file: pickle.dump(data, file, protocol=pickle.HIGHEST_PROTOCOL) subsample = cfg.DATASET.SUBSAMPLE_CLASSES train, test = OxfordPets.subsample_classes(train, test, subsample=subsample) super().__init__(train_x=train, val=test, test=test) def load_classnames(self): """Return a dictionary containing key-value pairs of <folder name>: <class name>. compatible for imagenet-style """ classnames = OrderedDict() for classname in sorted(os.listdir(os.path.join(self.image_dir, 'train'))): classnames[classname] = classname return classnames def read_data(self, classnames, split_dir): split_dir = os.path.join(self.image_dir, split_dir) folders = sorted(f.name for f in os.scandir(split_dir) if f.is_dir()) items = [] for label, folder in enumerate(folders): imnames = listdir_nohidden(os.path.join(split_dir, folder)) classname = classnames[folder] for imname in imnames: impath = os.path.join(split_dir, folder, imname) item = Datum(impath=impath, label=label, classname=classname) items.append(item) return items @DATASET_REGISTRY.register() class CIFAR100_(CIFAR10_): dataset_dir = "SCOOD/data/images" dataset_name = 'cifar100' def __init__(self, cfg): super().__init__(cfg)