datasets/cifar_.py (70 lines of code) (raw):
import os
import pickle
from collections import OrderedDict
from dassl.data.datasets import DATASET_REGISTRY, Datum, DatasetBase
from dassl.utils import listdir_nohidden, mkdir_if_missing
from .oxford_pets import OxfordPets
@DATASET_REGISTRY.register()
class CIFAR10_(DatasetBase):
dataset_dir = "SCOOD/data/images"
dataset_name = 'cifar10'
def __init__(self, cfg):
root = os.path.abspath(os.path.expanduser(cfg.DATASET.ROOT))
self.dataset_dir = os.path.join(root, self.dataset_dir)
self.image_dir = os.path.join(self.dataset_dir, self.dataset_name)
self.preprocessed = os.path.join(self.image_dir, "preprocessed.pkl")
self.split_fewshot_dir = os.path.join(self.image_dir, "split_fewshot")
mkdir_if_missing(self.split_fewshot_dir)
if os.path.exists(self.preprocessed):
with open(self.preprocessed, "rb") as f:
preprocessed = pickle.load(f)
train = preprocessed["train"]
test = preprocessed["test"]
else:
classnames = self.load_classnames()
train = self.read_data(classnames, "train")
# Follow standard practice to perform evaluation on the val set
# Also used as the val set (so evaluate the last-step model)
test = self.read_data(classnames, "test")
preprocessed = {"train": train, "test": test}
with open(self.preprocessed, "wb") as f:
pickle.dump(preprocessed, f, protocol=pickle.HIGHEST_PROTOCOL)
num_shots = cfg.DATASET.NUM_SHOTS
if num_shots >= 1:
seed = cfg.SEED
preprocessed = os.path.join(self.split_fewshot_dir, f"shot_{num_shots}-seed_{seed}.pkl")
if os.path.exists(preprocessed):
print(f"Loading preprocessed few-shot data from {preprocessed}")
with open(preprocessed, "rb") as file:
data = pickle.load(file)
train = data["train"]
else:
train = self.generate_fewshot_dataset(train, num_shots=num_shots)
data = {"train": train}
print(f"Saving preprocessed few-shot data to {preprocessed}")
with open(preprocessed, "wb") as file:
pickle.dump(data, file, protocol=pickle.HIGHEST_PROTOCOL)
subsample = cfg.DATASET.SUBSAMPLE_CLASSES
train, test = OxfordPets.subsample_classes(train, test, subsample=subsample)
super().__init__(train_x=train, val=test, test=test)
def load_classnames(self):
"""Return a dictionary containing
key-value pairs of <folder name>: <class name>.
compatible for imagenet-style
"""
classnames = OrderedDict()
for classname in sorted(os.listdir(os.path.join(self.image_dir, 'train'))):
classnames[classname] = classname
return classnames
def read_data(self, classnames, split_dir):
split_dir = os.path.join(self.image_dir, split_dir)
folders = sorted(f.name for f in os.scandir(split_dir) if f.is_dir())
items = []
for label, folder in enumerate(folders):
imnames = listdir_nohidden(os.path.join(split_dir, folder))
classname = classnames[folder]
for imname in imnames:
impath = os.path.join(split_dir, folder, imname)
item = Datum(impath=impath, label=label, classname=classname)
items.append(item)
return items
@DATASET_REGISTRY.register()
class CIFAR100_(CIFAR10_):
dataset_dir = "SCOOD/data/images"
dataset_name = 'cifar100'
def __init__(self, cfg):
super().__init__(cfg)