datasets/dtd.py (70 lines of code) (raw):

import os import pickle import random from dassl.data.datasets import DATASET_REGISTRY, Datum, DatasetBase from dassl.utils import listdir_nohidden, mkdir_if_missing from .oxford_pets import OxfordPets @DATASET_REGISTRY.register() class DescribableTextures(DatasetBase): dataset_dir = "dtd" def __init__(self, cfg): root = os.path.abspath(os.path.expanduser(cfg.DATASET.ROOT)) self.dataset_dir = os.path.join(root, self.dataset_dir) self.image_dir = os.path.join(self.dataset_dir, "images") self.split_path = os.path.join(self.dataset_dir, "split_zhou_DescribableTextures.json") self.split_fewshot_dir = os.path.join(self.dataset_dir, "split_fewshot") mkdir_if_missing(self.split_fewshot_dir) if os.path.exists(self.split_path): train, val, test = OxfordPets.read_split(self.split_path, self.image_dir) else: train, val, test = self.read_and_split_data(self.image_dir) OxfordPets.save_split(train, val, test, self.split_path, self.image_dir) num_shots = cfg.DATASET.NUM_SHOTS if num_shots >= 1: seed = cfg.SEED preprocessed = os.path.join(self.split_fewshot_dir, f"shot_{num_shots}-seed_{seed}.pkl") if os.path.exists(preprocessed): print(f"Loading preprocessed few-shot data from {preprocessed}") with open(preprocessed, "rb") as file: data = pickle.load(file) train, val = data["train"], data["val"] else: train = self.generate_fewshot_dataset(train, num_shots=num_shots) val = self.generate_fewshot_dataset(val, num_shots=min(num_shots, 4)) data = {"train": train, "val": val} print(f"Saving preprocessed few-shot data to {preprocessed}") with open(preprocessed, "wb") as file: pickle.dump(data, file, protocol=pickle.HIGHEST_PROTOCOL) subsample = cfg.DATASET.SUBSAMPLE_CLASSES train, val, test = OxfordPets.subsample_classes(train, val, test, subsample=subsample) super().__init__(train_x=train, val=val, test=test) @staticmethod def read_and_split_data(image_dir, p_trn=0.5, p_val=0.2, ignored=[], new_cnames=None): # The data are supposed to be organized into the following structure # ============= # images/ # dog/ # cat/ # horse/ # ============= categories = listdir_nohidden(image_dir) categories = [c for c in categories if c not in ignored] categories.sort() p_tst = 1 - p_trn - p_val print(f"Splitting into {p_trn:.0%} train, {p_val:.0%} val, and {p_tst:.0%} test") def _collate(ims, y, c): items = [] for im in ims: item = Datum(impath=im, label=y, classname=c) # is already 0-based items.append(item) return items train, val, test = [], [], [] for label, category in enumerate(categories): category_dir = os.path.join(image_dir, category) images = listdir_nohidden(category_dir) images = [os.path.join(category_dir, im) for im in images] random.shuffle(images) n_total = len(images) n_train = round(n_total * p_trn) n_val = round(n_total * p_val) n_test = n_total - n_train - n_val assert n_train > 0 and n_val > 0 and n_test > 0 if new_cnames is not None and category in new_cnames: category = new_cnames[category] train.extend(_collate(images[:n_train], label, category)) val.extend(_collate(images[n_train : n_train + n_val], label, category)) test.extend(_collate(images[n_train + n_val :], label, category)) return train, val, test