datasets/eurosat.py (60 lines of code) (raw):

import os import pickle from dassl.data.datasets import DATASET_REGISTRY, Datum, DatasetBase from dassl.utils import mkdir_if_missing from .oxford_pets import OxfordPets from .dtd import DescribableTextures as DTD NEW_CNAMES = { "AnnualCrop": "Annual Crop Land", "Forest": "Forest", "HerbaceousVegetation": "Herbaceous Vegetation Land", "Highway": "Highway or Road", "Industrial": "Industrial Buildings", "Pasture": "Pasture Land", "PermanentCrop": "Permanent Crop Land", "Residential": "Residential Buildings", "River": "River", "SeaLake": "Sea or Lake", } @DATASET_REGISTRY.register() class EuroSAT(DatasetBase): dataset_dir = "eurosat" def __init__(self, cfg): root = os.path.abspath(os.path.expanduser(cfg.DATASET.ROOT)) self.dataset_dir = os.path.join(root, self.dataset_dir) self.image_dir = os.path.join(self.dataset_dir, "2750") self.split_path = os.path.join(self.dataset_dir, "split_zhou_EuroSAT.json") self.split_fewshot_dir = os.path.join(self.dataset_dir, "split_fewshot") mkdir_if_missing(self.split_fewshot_dir) if os.path.exists(self.split_path): train, val, test = OxfordPets.read_split(self.split_path, self.image_dir) else: train, val, test = DTD.read_and_split_data(self.image_dir, new_cnames=NEW_CNAMES) OxfordPets.save_split(train, val, test, self.split_path, self.image_dir) num_shots = cfg.DATASET.NUM_SHOTS if num_shots >= 1: seed = cfg.SEED preprocessed = os.path.join(self.split_fewshot_dir, f"shot_{num_shots}-seed_{seed}.pkl") if os.path.exists(preprocessed): print(f"Loading preprocessed few-shot data from {preprocessed}") with open(preprocessed, "rb") as file: data = pickle.load(file) train, val = data["train"], data["val"] else: train = self.generate_fewshot_dataset(train, num_shots=num_shots) val = self.generate_fewshot_dataset(val, num_shots=min(num_shots, 4)) data = {"train": train, "val": val} print(f"Saving preprocessed few-shot data to {preprocessed}") with open(preprocessed, "wb") as file: pickle.dump(data, file, protocol=pickle.HIGHEST_PROTOCOL) subsample = cfg.DATASET.SUBSAMPLE_CLASSES train, val, test = OxfordPets.subsample_classes(train, val, test, subsample=subsample) super().__init__(train_x=train, val=val, test=test) def update_classname(self, dataset_old): dataset_new = [] for item_old in dataset_old: cname_old = item_old.classname cname_new = NEW_CLASSNAMES[cname_old] item_new = Datum(impath=item_old.impath, label=item_old.label, classname=cname_new) dataset_new.append(item_new) return dataset_new