datasets/imagenet.py (126 lines of code) (raw):
import os
import pickle
from collections import OrderedDict
from dassl.data.datasets import DATASET_REGISTRY, Datum, DatasetBase
from dassl.utils import listdir_nohidden, mkdir_if_missing
from .oxford_pets import OxfordPets
@DATASET_REGISTRY.register()
class ImageNet(DatasetBase):
dataset_dir = "imagenet" # 21k-split-1k/imagenet-extra-01
dataset_name = 'imagenet'
def __init__(self, cfg):
root = os.path.abspath(os.path.expanduser(cfg.DATASET.ROOT))
self.dataset_dir = os.path.join(root, self.dataset_dir)
self.image_dir = os.path.join(self.dataset_dir, "images")
self.preprocessed = os.path.join(self.dataset_dir, "preprocessed.pkl")
self.split_fewshot_dir = os.path.join(self.dataset_dir, "split_fewshot")
mkdir_if_missing(self.split_fewshot_dir)
if os.path.exists(self.preprocessed) and True:
with open(self.preprocessed, "rb") as f:
preprocessed = pickle.load(f)
train = preprocessed["train"]
test = preprocessed["test"]
else:
text_file = os.path.join(self.dataset_dir, "classnames.txt")
classnames = self.read_classnames(text_file)
train = self.read_data(classnames, "train")
# Follow standard practice to perform evaluation on the val set
# Also used as the val set (so evaluate the last-step model)
test = self.read_data(classnames, "val")
preprocessed = {"train": train, "test": test}
with open(self.preprocessed, "wb") as f:
pickle.dump(preprocessed, f, protocol=pickle.HIGHEST_PROTOCOL)
num_shots = cfg.DATASET.NUM_SHOTS
if num_shots >= 1:
seed = cfg.SEED
preprocessed = os.path.join(self.split_fewshot_dir, f"shot_{num_shots}-seed_{seed}.pkl")
if os.path.exists(preprocessed):
print(f"Loading preprocessed few-shot data from {preprocessed}")
with open(preprocessed, "rb") as file:
data = pickle.load(file)
train = data["train"]
else:
train = self.generate_fewshot_dataset(train, num_shots=num_shots)
data = {"train": train}
print(f"Saving preprocessed few-shot data to {preprocessed}")
with open(preprocessed, "wb") as file:
pickle.dump(data, file, protocol=pickle.HIGHEST_PROTOCOL)
subsample = cfg.DATASET.SUBSAMPLE_CLASSES
train, test = OxfordPets.subsample_classes(train, test, subsample=subsample)
super().__init__(train_x=train, val=test, test=test)
@staticmethod
def read_classnames(text_file):
"""Return a dictionary containing
key-value pairs of <folder name>: <class name>.
"""
classnames = OrderedDict()
with open(text_file, "r") as f:
lines = f.readlines()
for line in lines:
line = line.strip().split(" ")
folder = line[0]
classname = " ".join(line[1:])
classnames[folder] = classname
return classnames
def read_data(self, classnames, split_dir):
split_dir = os.path.join(self.image_dir, split_dir)
folders = sorted(f.name for f in os.scandir(split_dir) if f.is_dir())
items = []
for label, folder in enumerate(folders):
imnames = listdir_nohidden(os.path.join(split_dir, folder))
classname = classnames[folder]
for imname in imnames:
impath = os.path.join(split_dir, folder, imname)
item = Datum(impath=impath, label=label, classname=classname)
items.append(item)
return items
@DATASET_REGISTRY.register()
class ImageNet100_MCM(ImageNet):
dataset_dir = "imagenet100-MCM"
dataset_name = 'imagenet100'
def __init__(self, cfg):
super().__init__(cfg)
@DATASET_REGISTRY.register()
class ImageNet100_NEW(ImageNet):
dataset_dir = "imagenet100-NEW"
dataset_name = 'imagenet100'
def __init__(self, cfg):
super().__init__(cfg)
@DATASET_REGISTRY.register()
class ImageNet200_UNION(ImageNet):
dataset_dir = "imagenet200-UNION"
dataset_name = 'imagenet100'
def __init__(self, cfg):
super().__init__(cfg)
@DATASET_REGISTRY.register()
class ImageNetR(DatasetBase):
"""ImageNet-R(endition).
This dataset is used for testing only.
"""
dataset_dir = "imagenet-r"
dataset_name = 'imagenet-r'
def __init__(self, cfg):
self.full_dir = f'data/{self.dataset_dir[:-2]}/images/val'
root = os.path.abspath(os.path.expanduser(cfg.DATASET.ROOT))
self.dataset_dir = os.path.join(root, self.dataset_dir)
self.image_dir = os.path.join(self.dataset_dir)
text_file = os.path.join(self.dataset_dir, "classnames.txt")
classnames = ImageNet.read_classnames(text_file)
train = self.read_data(classnames, 'images')
# Follow standard practice to perform evaluation on the val set
# Also used as the val set (so evaluate the last-step model)
test = self.read_data(classnames, 'images')
subsample = cfg.DATASET.SUBSAMPLE_CLASSES
train, test = OxfordPets.subsample_classes(train, test, subsample=subsample)
super().__init__(train_x=train, val=test, test=test)
self._num_classes = len(self.valid_classes)
folders = sorted(os.listdir(self.full_dir))
self._classnames = [classnames[f] for f in folders]
def read_data(self, classnames, split_dir):
import torch
split_dir = os.path.join(self.image_dir, split_dir)
folders = sorted(f.name for f in os.scandir(self.full_dir) if f.is_dir())
items = []
self.valid_classes = torch.full((len(folders),), False)
for label, folder in enumerate(folders):
data_dir = os.path.join(split_dir, folder)
if not os.path.exists(data_dir):
continue
self.valid_classes[label] = True
imnames = listdir_nohidden(data_dir)
classname = classnames[folder]
for imname in imnames:
impath = os.path.join(split_dir, folder, imname)
item = Datum(impath=impath, label=label, classname=classname)
items.append(item)
return items