datasets/imagenet.py (126 lines of code) (raw):

import os import pickle from collections import OrderedDict from dassl.data.datasets import DATASET_REGISTRY, Datum, DatasetBase from dassl.utils import listdir_nohidden, mkdir_if_missing from .oxford_pets import OxfordPets @DATASET_REGISTRY.register() class ImageNet(DatasetBase): dataset_dir = "imagenet" # 21k-split-1k/imagenet-extra-01 dataset_name = 'imagenet' def __init__(self, cfg): root = os.path.abspath(os.path.expanduser(cfg.DATASET.ROOT)) self.dataset_dir = os.path.join(root, self.dataset_dir) self.image_dir = os.path.join(self.dataset_dir, "images") self.preprocessed = os.path.join(self.dataset_dir, "preprocessed.pkl") self.split_fewshot_dir = os.path.join(self.dataset_dir, "split_fewshot") mkdir_if_missing(self.split_fewshot_dir) if os.path.exists(self.preprocessed) and True: with open(self.preprocessed, "rb") as f: preprocessed = pickle.load(f) train = preprocessed["train"] test = preprocessed["test"] else: text_file = os.path.join(self.dataset_dir, "classnames.txt") classnames = self.read_classnames(text_file) train = self.read_data(classnames, "train") # Follow standard practice to perform evaluation on the val set # Also used as the val set (so evaluate the last-step model) test = self.read_data(classnames, "val") preprocessed = {"train": train, "test": test} with open(self.preprocessed, "wb") as f: pickle.dump(preprocessed, f, protocol=pickle.HIGHEST_PROTOCOL) num_shots = cfg.DATASET.NUM_SHOTS if num_shots >= 1: seed = cfg.SEED preprocessed = os.path.join(self.split_fewshot_dir, f"shot_{num_shots}-seed_{seed}.pkl") if os.path.exists(preprocessed): print(f"Loading preprocessed few-shot data from {preprocessed}") with open(preprocessed, "rb") as file: data = pickle.load(file) train = data["train"] else: train = self.generate_fewshot_dataset(train, num_shots=num_shots) data = {"train": train} print(f"Saving preprocessed few-shot data to {preprocessed}") with open(preprocessed, "wb") as file: pickle.dump(data, file, protocol=pickle.HIGHEST_PROTOCOL) subsample = cfg.DATASET.SUBSAMPLE_CLASSES train, test = OxfordPets.subsample_classes(train, test, subsample=subsample) super().__init__(train_x=train, val=test, test=test) @staticmethod def read_classnames(text_file): """Return a dictionary containing key-value pairs of <folder name>: <class name>. """ classnames = OrderedDict() with open(text_file, "r") as f: lines = f.readlines() for line in lines: line = line.strip().split(" ") folder = line[0] classname = " ".join(line[1:]) classnames[folder] = classname return classnames def read_data(self, classnames, split_dir): split_dir = os.path.join(self.image_dir, split_dir) folders = sorted(f.name for f in os.scandir(split_dir) if f.is_dir()) items = [] for label, folder in enumerate(folders): imnames = listdir_nohidden(os.path.join(split_dir, folder)) classname = classnames[folder] for imname in imnames: impath = os.path.join(split_dir, folder, imname) item = Datum(impath=impath, label=label, classname=classname) items.append(item) return items @DATASET_REGISTRY.register() class ImageNet100_MCM(ImageNet): dataset_dir = "imagenet100-MCM" dataset_name = 'imagenet100' def __init__(self, cfg): super().__init__(cfg) @DATASET_REGISTRY.register() class ImageNet100_NEW(ImageNet): dataset_dir = "imagenet100-NEW" dataset_name = 'imagenet100' def __init__(self, cfg): super().__init__(cfg) @DATASET_REGISTRY.register() class ImageNet200_UNION(ImageNet): dataset_dir = "imagenet200-UNION" dataset_name = 'imagenet100' def __init__(self, cfg): super().__init__(cfg) @DATASET_REGISTRY.register() class ImageNetR(DatasetBase): """ImageNet-R(endition). This dataset is used for testing only. """ dataset_dir = "imagenet-r" dataset_name = 'imagenet-r' def __init__(self, cfg): self.full_dir = f'data/{self.dataset_dir[:-2]}/images/val' root = os.path.abspath(os.path.expanduser(cfg.DATASET.ROOT)) self.dataset_dir = os.path.join(root, self.dataset_dir) self.image_dir = os.path.join(self.dataset_dir) text_file = os.path.join(self.dataset_dir, "classnames.txt") classnames = ImageNet.read_classnames(text_file) train = self.read_data(classnames, 'images') # Follow standard practice to perform evaluation on the val set # Also used as the val set (so evaluate the last-step model) test = self.read_data(classnames, 'images') subsample = cfg.DATASET.SUBSAMPLE_CLASSES train, test = OxfordPets.subsample_classes(train, test, subsample=subsample) super().__init__(train_x=train, val=test, test=test) self._num_classes = len(self.valid_classes) folders = sorted(os.listdir(self.full_dir)) self._classnames = [classnames[f] for f in folders] def read_data(self, classnames, split_dir): import torch split_dir = os.path.join(self.image_dir, split_dir) folders = sorted(f.name for f in os.scandir(self.full_dir) if f.is_dir()) items = [] self.valid_classes = torch.full((len(folders),), False) for label, folder in enumerate(folders): data_dir = os.path.join(split_dir, folder) if not os.path.exists(data_dir): continue self.valid_classes[label] = True imnames = listdir_nohidden(data_dir) classname = classnames[folder] for imname in imnames: impath = os.path.join(split_dir, folder, imname) item = Datum(impath=impath, label=label, classname=classname) items.append(item) return items