datasets/oxford_flowers.py (73 lines of code) (raw):

import os import pickle import random from scipy.io import loadmat from collections import defaultdict from dassl.data.datasets import DATASET_REGISTRY, Datum, DatasetBase from dassl.utils import read_json, mkdir_if_missing from .oxford_pets import OxfordPets @DATASET_REGISTRY.register() class OxfordFlowers(DatasetBase): dataset_dir = "oxford_flowers" def __init__(self, cfg): root = os.path.abspath(os.path.expanduser(cfg.DATASET.ROOT)) self.dataset_dir = os.path.join(root, self.dataset_dir) self.image_dir = os.path.join(self.dataset_dir, "jpg") self.label_file = os.path.join(self.dataset_dir, "imagelabels.mat") self.lab2cname_file = os.path.join(self.dataset_dir, "cat_to_name.json") self.split_path = os.path.join(self.dataset_dir, "split_zhou_OxfordFlowers.json") self.split_fewshot_dir = os.path.join(self.dataset_dir, "split_fewshot") mkdir_if_missing(self.split_fewshot_dir) if os.path.exists(self.split_path): train, val, test = OxfordPets.read_split(self.split_path, self.image_dir) else: train, val, test = self.read_data() OxfordPets.save_split(train, val, test, self.split_path, self.image_dir) num_shots = cfg.DATASET.NUM_SHOTS if num_shots >= 1: seed = cfg.SEED preprocessed = os.path.join(self.split_fewshot_dir, f"shot_{num_shots}-seed_{seed}.pkl") if os.path.exists(preprocessed): print(f"Loading preprocessed few-shot data from {preprocessed}") with open(preprocessed, "rb") as file: data = pickle.load(file) train, val = data["train"], data["val"] else: train = self.generate_fewshot_dataset(train, num_shots=num_shots) val = self.generate_fewshot_dataset(val, num_shots=min(num_shots, 4)) data = {"train": train, "val": val} print(f"Saving preprocessed few-shot data to {preprocessed}") with open(preprocessed, "wb") as file: pickle.dump(data, file, protocol=pickle.HIGHEST_PROTOCOL) subsample = cfg.DATASET.SUBSAMPLE_CLASSES train, val, test = OxfordPets.subsample_classes(train, val, test, subsample=subsample) super().__init__(train_x=train, val=val, test=test) def read_data(self): tracker = defaultdict(list) label_file = loadmat(self.label_file)["labels"][0] for i, label in enumerate(label_file): imname = f"image_{str(i + 1).zfill(5)}.jpg" impath = os.path.join(self.image_dir, imname) label = int(label) tracker[label].append(impath) print("Splitting data into 50% train, 20% val, and 30% test") def _collate(ims, y, c): items = [] for im in ims: item = Datum(impath=im, label=y - 1, classname=c) # convert to 0-based label items.append(item) return items lab2cname = read_json(self.lab2cname_file) train, val, test = [], [], [] for label, impaths in tracker.items(): random.shuffle(impaths) n_total = len(impaths) n_train = round(n_total * 0.5) n_val = round(n_total * 0.2) n_test = n_total - n_train - n_val assert n_train > 0 and n_val > 0 and n_test > 0 cname = lab2cname[str(label)] train.extend(_collate(impaths[:n_train], label, cname)) val.extend(_collate(impaths[n_train : n_train + n_val], label, cname)) test.extend(_collate(impaths[n_train + n_val :], label, cname)) return train, val, test