datasets/stanford_cars.py (61 lines of code) (raw):

import os import pickle from scipy.io import loadmat from dassl.data.datasets import DATASET_REGISTRY, Datum, DatasetBase from dassl.utils import mkdir_if_missing from .oxford_pets import OxfordPets @DATASET_REGISTRY.register() class StanfordCars(DatasetBase): dataset_dir = "stanford_cars" def __init__(self, cfg): root = os.path.abspath(os.path.expanduser(cfg.DATASET.ROOT)) self.dataset_dir = os.path.join(root, self.dataset_dir) self.split_path = os.path.join(self.dataset_dir, "split_zhou_StanfordCars.json") self.split_fewshot_dir = os.path.join(self.dataset_dir, "split_fewshot") mkdir_if_missing(self.split_fewshot_dir) if os.path.exists(self.split_path): train, val, test = OxfordPets.read_split(self.split_path, self.dataset_dir) else: trainval_file = os.path.join(self.dataset_dir, "devkit", "cars_train_annos.mat") test_file = os.path.join(self.dataset_dir, "cars_test_annos_withlabels.mat") meta_file = os.path.join(self.dataset_dir, "devkit", "cars_meta.mat") trainval = self.read_data("cars_train", trainval_file, meta_file) test = self.read_data("cars_test", test_file, meta_file) train, val = OxfordPets.split_trainval(trainval) OxfordPets.save_split(train, val, test, self.split_path, self.dataset_dir) num_shots = cfg.DATASET.NUM_SHOTS if num_shots >= 1: seed = cfg.SEED preprocessed = os.path.join(self.split_fewshot_dir, f"shot_{num_shots}-seed_{seed}.pkl") if os.path.exists(preprocessed): print(f"Loading preprocessed few-shot data from {preprocessed}") with open(preprocessed, "rb") as file: data = pickle.load(file) train, val = data["train"], data["val"] else: train = self.generate_fewshot_dataset(train, num_shots=num_shots) val = self.generate_fewshot_dataset(val, num_shots=min(num_shots, 4)) data = {"train": train, "val": val} print(f"Saving preprocessed few-shot data to {preprocessed}") with open(preprocessed, "wb") as file: pickle.dump(data, file, protocol=pickle.HIGHEST_PROTOCOL) subsample = cfg.DATASET.SUBSAMPLE_CLASSES train, val, test = OxfordPets.subsample_classes(train, val, test, subsample=subsample) super().__init__(train_x=train, val=val, test=test) def read_data(self, image_dir, anno_file, meta_file): anno_file = loadmat(anno_file)["annotations"][0] meta_file = loadmat(meta_file)["class_names"][0] items = [] for i in range(len(anno_file)): imname = anno_file[i]["fname"][0] impath = os.path.join(self.dataset_dir, image_dir, imname) label = anno_file[i]["class"][0, 0] label = int(label) - 1 # convert to 0-based index classname = meta_file[label][0] names = classname.split(" ") year = names.pop(-1) names.insert(0, year) classname = " ".join(names) item = Datum(impath=impath, label=label, classname=classname) items.append(item) return items