datasets/sun397.py (64 lines of code) (raw):

import os import pickle from dassl.data.datasets import DATASET_REGISTRY, Datum, DatasetBase from dassl.utils import mkdir_if_missing from .oxford_pets import OxfordPets @DATASET_REGISTRY.register() class SUN397(DatasetBase): dataset_dir = "sun397" def __init__(self, cfg): root = os.path.abspath(os.path.expanduser(cfg.DATASET.ROOT)) self.dataset_dir = os.path.join(root, self.dataset_dir) self.image_dir = os.path.join(self.dataset_dir, "SUN397") self.split_path = os.path.join(self.dataset_dir, "split_zhou_SUN397.json") self.split_fewshot_dir = os.path.join(self.dataset_dir, "split_fewshot") mkdir_if_missing(self.split_fewshot_dir) if os.path.exists(self.split_path): train, val, test = OxfordPets.read_split(self.split_path, self.image_dir) else: classnames = [] with open(os.path.join(self.dataset_dir, "ClassName.txt"), "r") as f: lines = f.readlines() for line in lines: line = line.strip()[1:] # remove / classnames.append(line) cname2lab = {c: i for i, c in enumerate(classnames)} trainval = self.read_data(cname2lab, "Training_01.txt") test = self.read_data(cname2lab, "Testing_01.txt") train, val = OxfordPets.split_trainval(trainval) OxfordPets.save_split(train, val, test, self.split_path, self.image_dir) num_shots = cfg.DATASET.NUM_SHOTS if num_shots >= 1: seed = cfg.SEED preprocessed = os.path.join(self.split_fewshot_dir, f"shot_{num_shots}-seed_{seed}.pkl") if os.path.exists(preprocessed): print(f"Loading preprocessed few-shot data from {preprocessed}") with open(preprocessed, "rb") as file: data = pickle.load(file) train, val = data["train"], data["val"] else: train = self.generate_fewshot_dataset(train, num_shots=num_shots) val = self.generate_fewshot_dataset(val, num_shots=min(num_shots, 4)) data = {"train": train, "val": val} print(f"Saving preprocessed few-shot data to {preprocessed}") with open(preprocessed, "wb") as file: pickle.dump(data, file, protocol=pickle.HIGHEST_PROTOCOL) subsample = cfg.DATASET.SUBSAMPLE_CLASSES train, val, test = OxfordPets.subsample_classes(train, val, test, subsample=subsample) super().__init__(train_x=train, val=val, test=test) def read_data(self, cname2lab, text_file): text_file = os.path.join(self.dataset_dir, text_file) items = [] with open(text_file, "r") as f: lines = f.readlines() for line in lines: imname = line.strip()[1:] # remove / classname = os.path.dirname(imname) label = cname2lab[classname] impath = os.path.join(self.image_dir, imname) names = classname.split("/")[1:] # remove 1st letter names = names[::-1] # put words like indoor/outdoor at first classname = " ".join(names) item = Datum(impath=impath, label=label, classname=classname) items.append(item) return items