in evaluation/tiny_benchmark/third/Cityscapes/evaluation/eval_script/origin_eval_MR_multisetup.py [0:0]
def evaluateImg(self, imgId, catId, hRng, vRng, maxDet):
'''
perform evaluation for single category and image
:return: dict (single image results)
'''
p = self.params
if p.useCats:
gt = self._gts[imgId,catId]
dt = self._dts[imgId,catId]
else:
gt = [_ for cId in p.catIds for _ in self._gts[imgId,cId]]
dt = [_ for cId in p.catIds for _ in self._dts[imgId,cId]]
if len(gt) == 0 and len(dt) ==0:
return None
for g in gt:
if g['ignore']:
g['_ignore'] = 1
else:
g['_ignore'] = 0
# sort dt highest score first, sort gt ignore last
gtind = np.argsort([g['_ignore'] for g in gt], kind='mergesort')
gt = [gt[i] for i in gtind]
dtind = np.argsort([-d['score'] for d in dt], kind='mergesort')
dt = [dt[i] for i in dtind[0:maxDet]]
# exclude dt out of height range
dt = [d for d in dt if d['height'] >= hRng[0] / self.params.expFilter and d['height'] < hRng[1] * self.params.expFilter]
dtind = np.array([int(d['id'] - dt[0]['id']) for d in dt])
# load computed ious
if len(dtind) > 0:
ious = self.computeIoU(gt,dt)
else:
ious = []
T = len(p.iouThrs)
G = len(gt)
D = len(dt)
gtm = np.zeros((T,G))
dtm = np.zeros((T,D))
gtIg = np.array([g['_ignore'] for g in gt])
dtIg = np.zeros((T,D))
if not len(ious)==0:
for tind, t in enumerate(p.iouThrs):
for dind, d in enumerate(dt):
# information about best match so far (m=-1 -> unmatched)
iou = min([t,1-1e-10])
bstOa = iou
bstg = -2
bstm = -2
for gind, g in enumerate(gt):
m = gtm[tind,gind]
# if this gt already matched, and not a crowd, continue
if m>0:
continue
# if dt matched to reg gt, and on ignore gt, stop
if bstm!=-2 and gtIg[gind] == 1:
break
# continue to next gt unless better match made
if ious[dind,gind] < bstOa:
continue
# if match successful and best so far, store appropriately
bstOa=ious[dind,gind]
bstg = gind
if gtIg[gind] == 0:
bstm = 1
else:
bstm = -1
# if match made store id of match for both dt and gt
if bstg ==-2:
continue
dtIg[tind,dind] = gtIg[bstg]
dtm[tind,dind] = gt[bstg]['id']
if bstm == 1:
gtm[tind,bstg] = d['id']
# store results for given image and category
return {
'image_id': imgId,
'category_id': catId,
'hRng': hRng,
'vRng': vRng,
'maxDet': maxDet,
'dtIds': [d['id'] for d in dt],
'gtIds': [g['id'] for g in gt],
'dtMatches': dtm,
'gtMatches': gtm,
'dtScores': [d['score'] for d in dt],
'gtIgnore': gtIg,
'dtIgnore': dtIg,
}