double MinCostMatching()

in evaluation/UAV-benchmark-MOTD_v1.0/utils/clearMOTMex.cpp [59:160]


double MinCostMatching(const VVD &cost, VI &Lmate, VI &Rmate) {
	int n = int(cost.size());

	// construct dual feasible solution
	VD u(n);
	VD v(n);
	for (int i = 0; i < n; i++) {
		u[i] = cost[i][0];
		for (int j = 1; j < n; j++) u[i] = min(u[i], cost[i][j]);
	}
	for (int j = 0; j < n; j++) {
		v[j] = cost[0][j] - u[0];
		for (int i = 1; i < n; i++) v[j] = min(v[j], cost[i][j] - u[i]);
	}

	// construct primal solution satisfying complementary slackness
	Lmate = VI(n, -1);
	Rmate = VI(n, -1);
	int mated = 0;
	for (int i = 0; i < n; i++) {
		for (int j = 0; j < n; j++) {
			if (Rmate[j] != -1) continue;
			if (fabs(cost[i][j] - u[i] - v[j]) < 1e-10) {
				Lmate[i] = j;
				Rmate[j] = i;
				mated++;
				break;
			}
		}
	}

	VD dist(n);
	VI dad(n);
	VI seen(n);

	// repeat until primal solution is feasible
	while (mated < n) {

		// find an unmatched left node
		int s = 0;
		while (Lmate[s] != -1) s++;

		// initialize Dijkstra
		fill(dad.begin(), dad.end(), -1);
		fill(seen.begin(), seen.end(), 0);
		for (int k = 0; k < n; k++)
			dist[k] = cost[s][k] - u[s] - v[k];

		int j = 0;
		while (true) {

			// find closest
			j = -1;
			for (int k = 0; k < n; k++) {
				if (seen[k]) continue;
				if (j == -1 || dist[k] < dist[j]) j = k;
			}
			seen[j] = 1;

			// termination condition
			if (Rmate[j] == -1) break;

			// relax neighbors
			const int i = Rmate[j];
			for (int k = 0; k < n; k++) {
				if (seen[k]) continue;
				const double new_dist = dist[j] + cost[i][k] - u[i] - v[k];
				if (dist[k] > new_dist) {
					dist[k] = new_dist;
					dad[k] = j;
				}
			}
		}

		// update dual variables
		for (int k = 0; k < n; k++) {
			if (k == j || !seen[k]) continue;
			const int i = Rmate[k];
			v[k] += dist[k] - dist[j];
			u[i] -= dist[k] - dist[j];
		}
		u[s] += dist[j];

		// augment along path
		while (dad[j] >= 0) {
			const int d = dad[j];
			Rmate[j] = Rmate[d];
			Lmate[Rmate[j]] = j;
			j = d;
		}
		Rmate[j] = s;
		Lmate[s] = j;

		mated++;
	}

	double value = 0;
	for (int i = 0; i < n; i++)
		value += cost[i][Lmate[i]];

	return value;
}