def detect()

in detect.py [0:0]


def detect(opt):
    source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    save_img = not opt.nosave and (not source.endswith('.txt') or True)  # save inference images
    webcam = source.isnumeric() or (source.endswith('.txt') and False) or source.lower().startswith(
        ('rtsp://', 'rtmp://', 'http://', 'https://'))

    # Directories
    save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

    # Initialize
    set_logging()
    device = select_device(opt.device)
    half = opt.half and device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    stride = int(model.stride.max())  # model stride
    imgsz = check_img_size(imgsz, s=stride)  # check img_size
    names = model.module.names if hasattr(model, 'module') else model.names  # get class names
    if half:
        model.half()  # to FP16

    # Second-stage classifier
    classify = False
    if classify:
        modelc = load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride)
    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride)

    # Run inference
    if device.type != 'cpu':
        model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())))  # run once
    t0 = time.time()
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        if img.ndimension() == 3:
            img = img.unsqueeze(0)
        # img /= 255.0  # 0-255 to 0.0-1.0
        img = norm_imgs(img, model)

        # Inference
        t1 = time_synchronized()
        (pred, p_det), masks = model(img, augment=opt.augment)
        masks = masks[0].sigmoid()
        if opt.view_center:
            masks = ((masks == F.max_pool2d(masks, 3, stride=1, padding=1)) & (masks > 0.3)).float()
        clusters = p_det[1][0]

        # Apply NMS
        pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, opt.classes, opt.agnostic_nms,
                                   max_det=opt.max_det)
        t2 = time_synchronized()

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0, frame = path[i], f'{i}: ', im0s[i].copy(), dataset.count
            else:
                p, s, im0, frame = path, '', im0s.copy(), getattr(dataset, 'frame', 0)
            
            image_name = osp.basename(p).split('.')[0]
            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # img.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # img.txt
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
            imc = im0.copy() if opt.save_crop else im0  # for opt.save_crop
            if opt.view_cluster:
                # cv2.imwrite(f'{save_dir}/{image_name}_0_raw.jpg', im0)
                
                heatmap = (masks[i, 0].cpu().numpy() * 255.).astype(np.uint8)
                heatmap = cv2.resize(heatmap, (im0.shape[1], im0.shape[0]), cv2.INTER_CUBIC)
                heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_RAINBOW)
                heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)
                image_att = cv2.addWeighted(im0, 0.4, heatmap, 0.5, 0)
                cv2.imwrite(f'{save_dir}/{image_name}_1_attn.jpg', image_att)
                    
                label_path = str(p).replace('images', 'labels').replace('.jpg', '.txt')
                if osp.exists(label_path):
                    with open(label_path, 'r') as f:
                        lines = f.read().splitlines()
                    gt_bboxes = [list(map(float, line.split())) for line in lines]

                    im1 = im0.copy()
                    for ci, xc, yc, w, h in gt_bboxes:
                        c = int(ci)
                        label = None if opt.hide_labels else (names[c] if opt.hide_conf else f'{names[c]}')
                        xyxy = [(xc - w / 2.) * im0.shape[1], (yc - h / 2.) * im0.shape[0],
                                (xc + w / 2.) * im0.shape[1], (yc + h / 2.) * im0.shape[0]]
                        plot_one_box(xyxy, im1, label=label, color=colors(c, True), line_thickness=opt.line_thickness)
                    cv2.imwrite(f'{save_dir}/{image_name}_5_gt.jpg', im1)

                    # targets = torch.cat((torch.ones((len(gt_bboxes), 1)), torch.tensor(gt_bboxes)), dim=1)
                    # gt_mask = target2mask(targets, (3, *im0.shape[:2]), nc=1, stride=1)[0]
                    gt_mask_path = str(p).replace('/images/', '/masks/').replace('_masked.', '.').replace('.jpg', '.npy')
                    if os.path.exists(gt_mask_path):
                        gt_mask = np.load(gt_mask_path)
                        gt_mask = gt_mask[..., :1]
                        # gt_mask = gt_mask[..., 1:] / gt_mask[..., 1:].max()

                        heatmap = (gt_mask * 255.).astype(np.uint8)
                        # heatmap = cv2.resize(heatmap, (im0.shape[1], im0.shape[0]), cv2.INTER_CUBIC)
                        heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_RAINBOW)
                        heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)
                        image_att = cv2.addWeighted(im0, 0.4, heatmap, 0.5, 0)
                        cv2.imwrite(f'{save_dir}/{image_name}_2_attn_gt.jpg', image_att)
                    
                cluster = clusters[clusters[:, 0] == i, 1:] * 8
                cluster = scale_coords(img.shape[2:], cluster, im0.shape).round()
                im2 = im0.copy()
                for ci, xyxy in enumerate(cluster):
                    # plot_one_box(xyxy, im0, color=(0, 255, 0), line_thickness=opt.line_thickness * 2)
                    x1, y1, x2, y2 = list(map(int, xyxy))
                    plot_one_box((x1, y1, x2, y2), im2, color=(0, 255, 0), line_thickness=opt.line_thickness * 2)
                cv2.imwrite(f'{save_dir}/{image_name}_3_cluster.jpg', im2)
                                
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or opt.save_crop or view_img:  # Add bbox to image
                        c = int(cls)  # integer class
                        label = None if opt.hide_labels else (names[c] if opt.hide_conf else f'{names[c]} {conf:.2f}')
                        plot_one_box(xyxy, im0, label=label, color=colors(c, True), line_thickness=opt.line_thickness)
                        if opt.save_crop:
                            save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)

                            # Print time (inference + NMS)
            print(f'{s}Done. ({t2 - t1:.3f}s)')

            # Stream results
            if view_img:
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'image':
                    if opt.view_cluster:
                        cv2.imwrite(f'{save_dir}/{image_name}_4_pred.jpg', im0)
                    else:
                        cv2.imwrite(save_path, im0)
                else:  # 'video' or 'stream'
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release()  # release previous video writer
                        if vid_cap:  # video
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        else:  # stream
                            fps, w, h = 30, im0.shape[1], im0.shape[0]
                            save_path += '.mp4'
                        vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
                    vid_writer.write(im0)

    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        print(f"Results saved to {save_dir}{s}")

    print(f'Done. ({time.time() - t0:.3f}s)')