def __call__()

in utils/loss.py [0:0]


    def __call__(self, p, targets, imgsz=None, masks=None, m_weights=None):  # predictions, targets, model
        p_det, p_seg = p
        offsets = []
        device = targets.device
        lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
        lpixl, larea, ldist = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
        
        if p_det is not None and p_det[0] is not None and p_det[1] is not None:  # stupid
            # ta = time_synchronized()
            if isinstance(p_det, tuple):
                p, offsets = p_det
                tcls, tbox, indices, anchors = self.build_patch_targets(offsets, targets, imgsz)  # targets
            else:
                p = p_det
                tcls, tbox, indices, anchors = self.build_targets(p, targets)
            # print(f'build_targets: {time_synchronized() - ta:.3f}s.')

            # Losses
            for i, pi in enumerate(p):  # layer index, layer predictions
                b, a, gj, gi = indices[i]  # image, anchor, gridy, gridx
                tobj = torch.zeros_like(pi[..., 0], device=device)  # target obj
    
                n = b.shape[0]  # number of targets
                if n:
                    ps = pi[b, a, gj, gi]  # prediction subset corresponding to targets
    
                    # Regression
                    pxy = ps[:, :2].sigmoid() * 2. - 0.5
                    pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
                    pbox = torch.cat((pxy, pwh), 1)  # predicted box
                    iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True)  # iou(prediction, target)
                    lbox += (1.0 - iou).mean()  # iou loss
    
                    # Objectness
                    tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype)  # iou ratio
    
                    # Classification
                    if self.nc > 1:  # cls loss (only if multiple classes)
                        t = torch.full_like(ps[:, 5:], self.cn, device=device)  # targets
                        t[range(n), tcls[i]] = self.cp
                        lcls += self.BCEcls(ps[:, 5:], t)  # BCE
    
                    # Append targets to text file
                    # with open('targets.txt', 'a') as file:
                    #     [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
    
                obji = self.BCEobj(pi[..., 4].clamp_(-9.21, 9.21), tobj)
                lobj += obji * self.balance[i]  # obj loss
                if self.autobalance:
                    self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
        
        # bs = tobj.shape[0]  # batch size
        bs = p_seg[0].shape[0] if p_seg is not None else tobj.shape[0]
        if self.autobalance:
            self.balance = [x / self.balance[self.ssi] for x in self.balance]
            
        lbox *= self.hyp['box']
        lobj *= self.hyp['obj'] * 0.5 #(0.5 if (len(offsets) and len(offsets[0]) > bs) else 1.)   # adaoff: 0.178
        lcls *= self.hyp['cls']
        
        if masks is not None and p_seg is not None:
            assert len(p_seg) == 1
            lpixl, larea, ldist = self.compute_loss_seg(p_seg[0], masks, targets, weight=m_weights)
        
        loss = (lbox + lobj + lcls) * 1.0 + (lpixl + larea + ldist) * 0.2
        loss_items = torch.cat((lbox, lobj, lcls, lpixl, larea, ldist, loss)).detach()
        return loss * bs, loss_items