evaluation/UAV-benchmark-MOTD_v1.0/utils/MinCostMatching.cpp (118 lines of code) (raw):
#include <mex.h>
#include <matrix.h>
#include <vector>
#include <algorithm>
using namespace std;
// Min cost bipartite matching via shortest augmenting paths
//
// Code from https://github.com/jaehyunp/
//
// This is an O(n^3) implementation of a shortest augmenting path
// algorithm for finding min cost perfect matchings in dense
// graphs. In practice, it solves 1000x1000 problems in around 1
// second.
//
// cost[i][j] = cost for pairing left node i with right node j
// Lmate[i] = index of right node that left node i pairs with
// Rmate[j] = index of left node that right node j pairs with
//
// The values in cost[i][j] may be positive or negative. To perform
// maximization, simply negate the cost[][] matrix.
typedef vector<double> VD;
typedef vector<VD> VVD;
typedef vector<int> VI;
double MinCostMatching(const VVD &cost, VI &Lmate, VI &Rmate) {
int n = int(cost.size());
// construct dual feasible solution
VD u(n);
VD v(n);
for (int i = 0; i < n; i++) {
u[i] = cost[i][0];
for (int j = 1; j < n; j++) u[i] = min(u[i], cost[i][j]);
}
for (int j = 0; j < n; j++) {
v[j] = cost[0][j] - u[0];
for (int i = 1; i < n; i++) v[j] = min(v[j], cost[i][j] - u[i]);
}
// construct primal solution satisfying complementary slackness
Lmate = VI(n, -1);
Rmate = VI(n, -1);
int mated = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (Rmate[j] != -1) continue;
if (fabs(cost[i][j] - u[i] - v[j]) < 1e-10) {
Lmate[i] = j;
Rmate[j] = i;
mated++;
break;
}
}
}
VD dist(n);
VI dad(n);
VI seen(n);
// repeat until primal solution is feasible
while (mated < n) {
// find an unmatched left node
int s = 0;
while (Lmate[s] != -1) s++;
// initialize Dijkstra
fill(dad.begin(), dad.end(), -1);
fill(seen.begin(), seen.end(), 0);
for (int k = 0; k < n; k++)
dist[k] = cost[s][k] - u[s] - v[k];
int j = 0;
while (true) {
// find closest
j = -1;
for (int k = 0; k < n; k++) {
if (seen[k]) continue;
if (j == -1 || dist[k] < dist[j]) j = k;
}
seen[j] = 1;
// termination condition
if (Rmate[j] == -1) break;
// relax neighbors
const int i = Rmate[j];
for (int k = 0; k < n; k++) {
if (seen[k]) continue;
const double new_dist = dist[j] + cost[i][k] - u[i] - v[k];
if (dist[k] > new_dist) {
dist[k] = new_dist;
dad[k] = j;
}
}
}
// update dual variables
for (int k = 0; k < n; k++) {
if (k == j || !seen[k]) continue;
const int i = Rmate[k];
v[k] += dist[k] - dist[j];
u[i] -= dist[k] - dist[j];
}
u[s] += dist[j];
// augment along path
while (dad[j] >= 0) {
const int d = dad[j];
Rmate[j] = Rmate[d];
Lmate[Rmate[j]] = j;
j = d;
}
Rmate[j] = s;
Lmate[s] = j;
mated++;
}
double value = 0;
for (int i = 0; i < n; i++)
value += cost[i][Lmate[i]];
return value;
}
void mexFunction( int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[] )
{
/* Input arguments */
int nOfRows = mxGetM(prhs[0]);
int nOfColumns = mxGetN(prhs[0]);
double* distMatrix = mxGetPr(prhs[0]);
/* Output arguments */
plhs[0] = mxCreateDoubleMatrix(nOfRows, nOfColumns, mxREAL);
plhs[1] = mxCreateDoubleMatrix(1, 1, mxREAL);
double *assignment = mxGetPr(plhs[0]);
double *cost = mxGetPr(plhs[1]);
if (nOfRows == 0 || nOfColumns == 0)
return;
/* Call C-function */
double INF = 1e8;
int squareSize = max(nOfRows, nOfColumns);
vector<vector<double>> alldist(squareSize, vector<double>(squareSize, INF));
for (int i = 0; i < nOfRows; i++)
{
for (int j =0; j < nOfColumns; j++)
{
alldist[i][j] = distMatrix[j*nOfRows + i];
}
}
vector<int> Lmate, Rmate;
MinCostMatching(alldist, Lmate, Rmate);
cost[0] = 0;
for (int i = 0; i < nOfRows; i++)
{
if (Lmate[i] < nOfColumns && alldist[i][Lmate[i]] != INF)
{
assignment[Lmate[i] * nOfRows + i] = 1;
cost[0] += alldist[i][Lmate[i]];
}
}
}