evaluation/tiny_benchmark/maskrcnn_benchmark/modeling/rpn/cascade_fcos/loss.py (200 lines of code) (raw):
"""
This file contains specific functions for computing losses of FCOS
file
"""
import torch
from torch.nn import functional as F
from torch import nn
from ..utils import concat_box_prediction_layers
from maskrcnn_benchmark.layers import IOULoss
from maskrcnn_benchmark.layers import SigmoidFocalLoss
from maskrcnn_benchmark.modeling.matcher import Matcher
from maskrcnn_benchmark.modeling.utils import cat
from maskrcnn_benchmark.structures.boxlist_ops import boxlist_iou
from maskrcnn_benchmark.structures.boxlist_ops import cat_boxlist
import warnings
from math import sqrt
INF = 100000000
class FCOSLossComputation(object):
"""
This class computes the FCOS losses.
"""
def __init__(self, cfg):
self.cls_loss_func = SigmoidFocalLoss(
cfg.MODEL.FCOS.LOSS_GAMMA,
cfg.MODEL.FCOS.LOSS_ALPHA
)
# we make use of IOU Loss for bounding boxes regression,
# but we found that L1 in log scale can yield a similar performance
self.box_reg_loss_func = IOULoss()
self.centerness_loss_func = nn.BCEWithLogitsLoss()
self.cascade_area_th = cfg.MODEL.FCOS.CASCADE_AREA_TH
self.vis_labels = cfg.MODEL.FCOS.DEBUG.VIS_LABELS
self.no_match_gt_count = {pos_area: 0 for pos_area in self.cascade_area_th}
def prepare_targets(self, points, targets, pos_area):
object_sizes_of_interest = [
[-1, 64],
[64, 128],
[128, 256],
[256, 512],
[512, INF],
]
expanded_object_sizes_of_interest = []
for l, points_per_level in enumerate(points):
object_sizes_of_interest_per_level = \
points_per_level.new_tensor(object_sizes_of_interest[l])
expanded_object_sizes_of_interest.append(
object_sizes_of_interest_per_level[None].expand(len(points_per_level), -1)
)
expanded_object_sizes_of_interest = torch.cat(expanded_object_sizes_of_interest, dim=0)
num_points_per_level = [len(points_per_level) for points_per_level in points]
points_all_level = torch.cat(points, dim=0)
labels, reg_targets = self.compute_targets_for_locations(
points_all_level, targets, expanded_object_sizes_of_interest, pos_area
)
for i in range(len(labels)):
labels[i] = torch.split(labels[i], num_points_per_level, dim=0)
reg_targets[i] = torch.split(reg_targets[i], num_points_per_level, dim=0)
labels_level_first = []
reg_targets_level_first = []
for level in range(len(points)):
labels_level_first.append(
torch.cat([labels_per_im[level] for labels_per_im in labels], dim=0)
)
reg_targets_level_first.append(
torch.cat([reg_targets_per_im[level] for reg_targets_per_im in reg_targets], dim=0)
)
return labels_level_first, reg_targets_level_first
def compute_targets_for_locations(self, locations, targets, object_sizes_of_interest, pos_area):
def is_in_pos_boxes(xs, ys, targets_per_im, pos_area, EPS=1e-6):
bboxes = targets_per_im.bbox
centers = torch.cat([(bboxes[:, [0]] + bboxes[:, [2]]) / 2, (bboxes[:, [1]] + bboxes[:, [3]]) / 2], dim=1)
WH = torch.cat([(bboxes[:, [2]] - bboxes[:, [0]] + 1), (bboxes[:, [3]] - bboxes[:, [1]] + 1)], dim=1)
WH *= sqrt(pos_area)
# WH[WH < 2 + EPS] = 2 + EPS
x1y1 = centers - (WH - 1) / 2
x2y2 = centers + (WH - 1) / 2
bboxes = torch.cat([x1y1, x2y2], dim=1)
l = xs[:, None] - bboxes[:, 0][None]
t = ys[:, None] - bboxes[:, 1][None]
r = bboxes[:, 2][None] - xs[:, None]
b = bboxes[:, 3][None] - ys[:, None]
ltrb = torch.stack([l, t, r, b], dim=2)
is_in_boxes = ltrb.min(dim=2)[0] > 0
self.no_match_gt_count[pos_area] += (is_in_boxes.sum(dim=0) < EPS).sum().item()
if (self.no_match_gt_count[pos_area] + 1) % 100 == 0:
import warnings
warnings.warn("when pos_area={}, already have {} ground-truth no matched."
.format(pos_area, self.no_match_gt_count[pos_area]))
return is_in_boxes
labels = []
reg_targets = []
xs, ys = locations[:, 0], locations[:, 1]
for im_i in range(len(targets)):
targets_per_im = targets[im_i]
assert targets_per_im.mode == "xyxy"
bboxes = targets_per_im.bbox
labels_per_im = targets_per_im.get_field("labels")
area = targets_per_im.area()
l = xs[:, None] - bboxes[:, 0][None]
t = ys[:, None] - bboxes[:, 1][None]
r = bboxes[:, 2][None] - xs[:, None]
b = bboxes[:, 3][None] - ys[:, None]
reg_targets_per_im = torch.stack([l, t, r, b], dim=2)
# is_in_boxes = reg_targets_per_im.min(dim=2)[0] > 0
is_in_boxes = is_in_pos_boxes(xs, ys, targets_per_im, pos_area) # add here
# assert (is_in_boxes != is_in_boxes2).sum().item() == 0, 'not equal {}vs{}, {}vs{}\n {}, {}'.\
# format(is_in_boxes.sum(), is_in_boxes2.sum(), is_in_boxes.device, is_in_boxes2.device,
# ((the_bboxes - bboxes).abs() > 1e-6).sum(), ((ltrb - reg_targets_per_im).abs() > 1e-6).sum())
max_reg_targets_per_im = reg_targets_per_im.max(dim=2)[0]
# limit the regression range for each location
is_cared_in_the_level = \
(max_reg_targets_per_im >= object_sizes_of_interest[:, [0]]) & \
(max_reg_targets_per_im <= object_sizes_of_interest[:, [1]])
locations_to_gt_area = area[None].repeat(len(locations), 1)
locations_to_gt_area[is_in_boxes == 0] = INF
locations_to_gt_area[is_cared_in_the_level == 0] = INF
# if there are still more than one objects for a location,
# we choose the one with minimal area
locations_to_min_aera, locations_to_gt_inds = locations_to_gt_area.min(dim=1)
reg_targets_per_im = reg_targets_per_im[range(len(locations)), locations_to_gt_inds]
labels_per_im = labels_per_im[locations_to_gt_inds]
labels_per_im[locations_to_min_aera == INF] = 0
labels.append(labels_per_im)
reg_targets.append(reg_targets_per_im)
return labels, reg_targets
def compute_centerness_targets(self, reg_targets):
left_right = reg_targets[:, [0, 2]]
top_bottom = reg_targets[:, [1, 3]]
centerness = (left_right.min(dim=-1)[0] / left_right.max(dim=-1)[0]) * \
(top_bottom.min(dim=-1)[0] / top_bottom.max(dim=-1)[0])
return torch.sqrt(centerness)
# def cal_single_label_loss(self, locations, box_cls, box_regression_flatten, centerness_flatten, targets):
# N = box_cls[0].size(0)
# num_classes = box_cls[0].size(1)
# labels, reg_targets = self.prepare_targets(locations, targets)
#
# if self.vis_labels: show_label_map(labels, box_cls)
#
# box_cls_flatten = []
# labels_flatten = []
# reg_targets_flatten = []
# for l in range(len(labels)):
# box_cls_flatten.append(box_cls[l].permute(0, 2, 3, 1).reshape(-1, num_classes))
# labels_flatten.append(labels[l].reshape(-1))
# reg_targets_flatten.append(reg_targets[l].reshape(-1, 4))
# box_cls_flatten = torch.cat(box_cls_flatten, dim=0)
# labels_flatten = torch.cat(labels_flatten, dim=0)
# reg_targets_flatten = torch.cat(reg_targets_flatten, dim=0)
#
# pos_inds = torch.nonzero(labels_flatten > 0).squeeze(1)
# cls_loss = self.cls_loss_func(
# box_cls_flatten,
# labels_flatten.int()
# ) / (pos_inds.numel() + N) # add N to avoid dividing by a zero
#
# box_regression_flatten = box_regression_flatten[pos_inds]
# reg_targets_flatten = reg_targets_flatten[pos_inds]
# centerness_flatten = centerness_flatten[pos_inds]
#
# if pos_inds.numel() > 0:
# centerness_targets = self.compute_centerness_targets(reg_targets_flatten)
# reg_loss = self.box_reg_loss_func(
# box_regression_flatten,
# reg_targets_flatten,
# centerness_targets
# )
# centerness_loss = self.centerness_loss_func(
# centerness_flatten,
# centerness_targets
# )
# else:
# reg_loss = box_regression_flatten.sum()
# centerness_loss = centerness_flatten.sum()
# return cls_loss, reg_loss, centerness_loss
def cal_single_label_loss(self, locations, box_cls, box_regression_flatten, centerness_flatten, targets, pos_area,
need_reg=True):
N = box_cls[0].size(0)
num_classes = box_cls[0].size(1)
labels, reg_targets = self.prepare_targets(locations, targets, pos_area)
if self.vis_labels: show_label_map(labels, box_cls)
box_cls_flatten = [box_cls[l].permute(0, 2, 3, 1).reshape(-1, num_classes) for l in range(len(box_cls))]
box_cls_flatten = torch.cat(box_cls_flatten, dim=0)
labels_flatten = [labels[l].reshape(-1) for l in range(len(labels))]
labels_flatten = torch.cat(labels_flatten, dim=0)
pos_inds = torch.nonzero(labels_flatten > 0).squeeze(1)
cls_loss = self.cls_loss_func(
box_cls_flatten,
labels_flatten.int()
) / (pos_inds.numel() + N) # add N to avoid dividing by a zero
reg_loss, centerness_loss = 0, 0
if need_reg:
reg_targets_flatten = [reg_targets[l].reshape(-1, 4) for l in range(len(reg_targets))]
reg_targets_flatten = torch.cat(reg_targets_flatten, dim=0)
box_regression_flatten = box_regression_flatten[pos_inds]
reg_targets_flatten = reg_targets_flatten[pos_inds]
if centerness_flatten is not None: centerness_flatten = centerness_flatten[pos_inds]
if pos_inds.numel() > 0:
centerness_targets = self.compute_centerness_targets(reg_targets_flatten)
reg_loss = self.box_reg_loss_func(
box_regression_flatten,
reg_targets_flatten,
centerness_targets
)
if centerness_flatten is not None:
centerness_loss = self.centerness_loss_func(
centerness_flatten,
centerness_targets
)
else:
reg_loss = box_regression_flatten.sum()
if centerness_flatten is not None: centerness_loss = centerness_flatten.sum()
warnings.warn("no positive sample in this batch.")
return cls_loss, reg_loss, centerness_loss
def __call__(self, locations, box_cls_set, box_regression, centerness, targets):
"""
Arguments:
locations (list[BoxList])
box_cls (list[Tensor])
box_regression (list[Tensor])
centerness (list[Tensor])
targets (list[BoxList])
Returns:
cls_loss (Tensor)
reg_loss (Tensor)
centerness_loss (Tensor)
"""
# flatten and cat all fpn level results
box_regression_flatten = []
centerness_flatten = []
for l in range(len(box_regression)):
box_regression_flatten.append(box_regression[l].permute(0, 2, 3, 1).reshape(-1, 4))
if centerness is not None: centerness_flatten.append(centerness[l].reshape(-1))
box_regression_flatten = torch.cat(box_regression_flatten, dim=0)
if centerness is not None: centerness_flatten = torch.cat(centerness_flatten, dim=0)
else: centerness_flatten = None
all_cls_loss, all_reg_loss, all_centerness_loss = 0, 0, 0
for area_th in self.cascade_area_th:
area_rate = int(area_th * 100)
box_cls = box_cls_set['cls_logits_{}%'.format(area_rate)]
need_reg = area_rate == 100
cls_loss, reg_loss, centerness_loss = self.cal_single_label_loss(locations, box_cls, box_regression_flatten,
centerness_flatten, targets, area_th, need_reg)
all_cls_loss += cls_loss
all_reg_loss += reg_loss
all_centerness_loss += centerness_loss
all_cls_loss /= len(self.cascade_area_th)
return all_cls_loss, all_reg_loss, all_centerness_loss
def make_fcos_loss_evaluator(cfg):
loss_evaluator = FCOSLossComputation(cfg)
return loss_evaluator
def show_label_map(labels, box_cls):
for i, (label, cls) in enumerate(zip(labels, box_cls)):
labels[i] = (label > 0).float().reshape((2, 1, cls.shape[-2], cls.shape[-1]))
label_map = 0
shape, pos_count = None, []
for i in range(0, len(labels)):
label_sum = labels[i].sum()
if shape is None:
if label_sum > 0:
shape = labels[i].shape
else:
label = F.upsample(labels[i], shape[2:], mode='bilinear')
label_map += label
pos_count.append(int(label_sum.cpu().numpy()))
# print(label_map.shape)
import matplotlib.pyplot as plt
import numpy as np
label_map = label_map[0].permute((1, 2, 0)).cpu().numpy()[:, :, 0].astype(np.float32)
max_l = label_map.max()
if max_l > 0:
label_map /= max_l
plt.imshow(label_map)
plt.title("pos_count:{} ".format(pos_count))
plt.show()