evaluation/tiny_benchmark/maskrcnn_benchmark/modeling/rpn/loss.py (173 lines of code) (raw):

# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. """ This file contains specific functions for computing losses on the RPN file """ import torch from torch.nn import functional as F from .utils import concat_box_prediction_layers from ..balanced_positive_negative_sampler import BalancedPositiveNegativeSampler from maskrcnn_benchmark.layers import smooth_l1_loss from maskrcnn_benchmark.modeling.matcher import Matcher from maskrcnn_benchmark.structures.boxlist_ops import boxlist_iou from maskrcnn_benchmark.structures.boxlist_ops import cat_boxlist from maskrcnn_benchmark.modeling.ohem_loss import OHEMLoss, OHEM2Loss from maskrcnn_benchmark.structures.bounding_box import BoxList class RPNLossComputation(object): """ This class computes the RPN loss. """ def __init__(self, proposal_matcher, fg_bg_sampler, box_coder, generate_labels_func, ohem_loss=None): """ Arguments: proposal_matcher (Matcher) fg_bg_sampler (BalancedPositiveNegativeSampler) box_coder (BoxCoder) """ # self.target_preparator = target_preparator self.proposal_matcher = proposal_matcher self.fg_bg_sampler = fg_bg_sampler self.box_coder = box_coder self.copied_fields = [] self.generate_labels_func = generate_labels_func self.discard_cases = ['not_visibility', 'between_thresholds'] self.ohem_loss = ohem_loss # self.debug = False # add by hui def match_targets_to_anchors(self, anchor, target, copied_fields=[]): match_quality_matrix = boxlist_iou(target, anchor) # ################# changed by hui ################################################### if len(target.bbox) == 0: matched_idxs = torch.LongTensor([-1] * match_quality_matrix.shape[1]) else: matched_idxs = self.proposal_matcher(match_quality_matrix) # for anchor recall cal # if self.debug: # record_for_recall(matched_idxs, target) ##################################################################################### # RPN doesn't need any fields from target # for creating the labels, so clear them all target = target.copy_with_fields(copied_fields) # get the targets corresponding GT for each anchor # NB: need to clamp the indices because we can have a single # GT in the image, and matched_idxs can be -2, which goes # out of bounds matched_targets = target[matched_idxs.clamp(min=0)] matched_targets.add_field("matched_idxs", matched_idxs) return matched_targets def prepare_targets(self, anchors, targets): labels = [] regression_targets = [] for anchors_per_image, targets_per_image in zip(anchors, targets): matched_targets = self.match_targets_to_anchors( anchors_per_image, targets_per_image, self.copied_fields ) matched_idxs = matched_targets.get_field("matched_idxs") labels_per_image = self.generate_labels_func(matched_targets) labels_per_image = labels_per_image.to(dtype=torch.float32) # Background (negative examples) bg_indices = matched_idxs == Matcher.BELOW_LOW_THRESHOLD labels_per_image[bg_indices] = 0 # discard anchors that go out of the boundaries of the image if "not_visibility" in self.discard_cases: labels_per_image[~anchors_per_image.get_field("visibility")] = -1 # discard indices that are between thresholds if "between_thresholds" in self.discard_cases: inds_to_discard = matched_idxs == Matcher.BETWEEN_THRESHOLDS labels_per_image[inds_to_discard] = -1 # compute regression targets regression_targets_per_image = self.box_coder.encode( matched_targets.bbox, anchors_per_image.bbox ) labels.append(labels_per_image) regression_targets.append(regression_targets_per_image) return labels, regression_targets def __call__(self, anchors, objectness, box_regression, targets): """ Arguments: anchors (list[BoxList]) objectness (list[Tensor]) box_regression (list[Tensor]) targets (list[BoxList]) Returns: objectness_loss (Tensor) box_loss (Tensor """ # HxWxSxA anchors = [cat_boxlist(anchors_per_image) for anchors_per_image in anchors] objectness, box_regression = \ concat_box_prediction_layers(objectness, box_regression) objectness = objectness.squeeze() # add by hui ############################################### # _box_regression = box_regression.reshape((len(targets), -1, box_regression.shape[-1])) # for box_regression_per_img, anchors_per_image, targets_per_img in zip(_box_regression, anchors, targets): # assert len(anchors_per_image) == len(box_regression_per_img) # pred_boxes = self.box_coder.decode(box_regression_per_img, anchors_per_image.bbox) # pred_boxes = BoxList(pred_boxes, targets_per_img.size, mode='xyxy') # ious = boxlist_iou(targets_per_img, pred_boxes) # ious # ######################################################### labels, regression_targets = self.prepare_targets(anchors, targets) # show_label(anchors[0].size, labels, regression_targets, objectness) # sample sampled_pos_inds, sampled_neg_inds = self.fg_bg_sampler(labels) sampled_pos_inds = torch.nonzero(torch.cat(sampled_pos_inds, dim=0)).squeeze(1) sampled_neg_inds = torch.nonzero(torch.cat(sampled_neg_inds, dim=0)).squeeze(1) sampled_inds = torch.cat([sampled_pos_inds, sampled_neg_inds], dim=0) labels = torch.cat(labels, dim=0) regression_targets = torch.cat(regression_targets, dim=0) box_loss = smooth_l1_loss( box_regression[sampled_pos_inds], regression_targets[sampled_pos_inds], beta=1.0 / 9, size_average=False, ) # raise ValueError("(sampled_inds.numel()) devide twice, another time is in line 156") # ################################# add by hui ################################################### if self.ohem_loss is None: objectness_loss = F.binary_cross_entropy_with_logits( objectness[sampled_inds], labels[sampled_inds] ) box_loss = box_loss / (sampled_inds.numel()) # print('rpnx', sampled_inds.numel()) else: objectness_loss = self.ohem_loss(objectness[sampled_inds], labels[sampled_inds]) box_loss = box_loss / self.ohem_loss.sample_count # print('rpn', self.ohem_loss.sample_count) # ################################################################################################# return objectness_loss, box_loss # This function should be overwritten in RetinaNet def generate_rpn_labels(matched_targets): matched_idxs = matched_targets.get_field("matched_idxs") labels_per_image = matched_idxs >= 0 return labels_per_image def make_rpn_loss_evaluator(cfg, box_coder): matcher = Matcher( cfg.MODEL.RPN.FG_IOU_THRESHOLD, cfg.MODEL.RPN.BG_IOU_THRESHOLD, allow_low_quality_matches=True, ) fg_bg_sampler = BalancedPositiveNegativeSampler( cfg.MODEL.RPN.BATCH_SIZE_PER_IMAGE, cfg.MODEL.RPN.POSITIVE_FRACTION ) # #################################### changed by hui #################################################### ohem_loss = None if cfg.MODEL.RPN.OHEM == 1: ohem_loss = OHEMLoss(cfg.MODEL.RPN.OHEM1_NEG_RATE, binary_logits=True) elif cfg.MODEL.RPN.OHEM == 2: ohem_loss = OHEM2Loss(cfg.MODEL.RPN.OHEM2_BATCH_SIZE_PER_IM * cfg.SOLVER.IMS_PER_BATCH // cfg.SOLVER.NUM_GPU, cfg.MODEL.RPN.OHEM2_POSITIVE_FRACTION, binary_logits=True, hard_rate=cfg.MODEL.RPN.OHEM2_HARD_RATE) loss_evaluator = RPNLossComputation(matcher, fg_bg_sampler, box_coder, generate_rpn_labels, ohem_loss) # ####################################################################################################### return loss_evaluator # ############## add by hui #########################################################3 def record_for_recall(matched_idxs, target): matched_proposal = matched_idxs.clone().cpu().numpy().tolist() target_length = target.get_field("labels").size()[0] # matched_proposal = tuple(set(matched_proposal[:-target_length])) matched_proposal = [i for i in matched_proposal if i > 0] from MyPackage.tools.debug_log.recorder import recorder bbox = target.bbox w = bbox[:, 2] - bbox[:, 0] + 1 h = bbox[:, 3] - bbox[:, 1] + 1 scale = torch.sqrt(w * h).cpu().numpy() recorder.record('anchor_recall', scale.tolist(), target.get_field("labels").cpu().numpy().tolist(), target_length, matched_proposal, len(matched_proposal)) batch_id = 0 def show_label(img_size, labels, reg_targets, objectness): import matplotlib.pyplot as plt import numpy as np W, H = img_size S, A = 1, 3 stride = (4, 8, 16, 32, 64) labels = labels[0].reshape((-1, S, A)) reg_targets = reg_targets[0].reshape((-1, S, A, 4)) objectness = objectness.reshape((-1, labels.shape[0], S, A))[0] new_labels, new_reg_targets, new_objectness = [], [], [] sidx = 0 for s in stride: w, h = W // s, H // s label = labels[sidx: sidx+w*h].reshape(h, w, S, A) new_labels.append(label) reg_target = reg_targets[sidx:sidx+w*h].reshape(h, w, S, A, 4) new_reg_targets.append(reg_target) new_objectness.append(objectness[sidx:sidx+w*h].reshape(h, w, S, A)) sidx += w * h assert sidx == len(labels) labels = new_labels reg_targets = new_reg_targets objectness = new_objectness i = 0 # show labels N = 0 for label in labels: label = label.cpu().numpy() for s in range(S): for a in range(A): if np.sum(label[:, :, s, a] > 0) == 0: continue N += 1 i = 1 plt.figure(figsize=(12, N*4)) for l, label in enumerate(labels): label = label.cpu().numpy() for s in range(S): for a in range(A): npos = np.sum(label[:, :, s, a] > 0) if npos == 0: continue plt.subplot(N, 2, i) plt.imshow((label[:, :, s, a] + 1) / 3, vmin=0, vmax=1) plt.title("P{}, S:{}, A:{}, npos:{}".format(l, s, a, npos)) i += 1 plt.subplot(N, 2, i) plt.imshow((objectness[l][:, :, s, a]).sigmoid().detach().cpu().numpy(), vmin=0, vmax=1) plt.title("P{}, S:{}, A:{}".format(l, s, a)) i += 1 plt.show() valid_reg_targets = [] for label, reg_target in zip(labels, reg_targets): reg_target = reg_target[label == 1] valid_reg_targets.append(reg_target) valid_reg_targets = torch.cat(valid_reg_targets, dim=0) global batch_id torch.save(valid_reg_targets, 'outputs/tmp/valid_reg_targets{}.pth'.format(batch_id)) batch_id += 1 # if len(valid_reg_targets) > 1: # print(valid_reg_targets.shape[0], valid_reg_targets.mean(dim=0), valid_reg_targets.std(dim=0)) # else: # print(valid_reg_targets) # ########################################################3#########################################################3