evaluation/tiny_benchmark/tools/train_test_net.py (188 lines of code) (raw):

# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. r""" Basic training script for PyTorch """ # Set up custom environment before nearly anything else is imported # NOTE: this should be the first import (no not reorder) from maskrcnn_benchmark.utils.env import setup_environment # noqa F401 isort:skip import argparse import os import shutil import torch from maskrcnn_benchmark.config import cfg from maskrcnn_benchmark.data import make_data_loader from maskrcnn_benchmark.solver import make_lr_scheduler from maskrcnn_benchmark.solver import make_optimizer from maskrcnn_benchmark.engine.inference import inference from maskrcnn_benchmark.engine import inference_trainer from maskrcnn_benchmark.modeling.detector import build_detection_model from maskrcnn_benchmark.utils.checkpoint import DetectronCheckpointer from maskrcnn_benchmark.utils.collect_env import collect_env_info from maskrcnn_benchmark.utils.comm import synchronize, get_rank from maskrcnn_benchmark.utils.imports import import_file from maskrcnn_benchmark.utils.logger import setup_logger from maskrcnn_benchmark.utils.miscellaneous import mkdir from maskrcnn_benchmark.config.paths_catalog import DatasetCatalog def fixed_seed(init_seed): # add by hui import numpy as np import random if init_seed == -2: init_seed = np.random.randint(0, 2**32) print("set random seed to {}.".format(init_seed)) random.seed(init_seed) torch.manual_seed(init_seed) np.random.seed(init_seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(init_seed) # torch.backends.cudnn.enabled = False # # torch.backends.cudnn.benchmark = False # torch.backends.cudnn.deterministic = True def train(cfg, local_rank, distributed): # ############################# add by hui ########################## if cfg.FIXED_SEED >= 0 or cfg.FIXED_SEED == -2: fixed_seed(cfg.FIXED_SEED) # ################################################################### model = build_detection_model(cfg) device = torch.device(cfg.MODEL.DEVICE) model.to(device) optimizer = make_optimizer(cfg, model) scheduler = make_lr_scheduler(cfg, optimizer) if distributed: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[local_rank], output_device=local_rank, # this should be removed if we update BatchNorm stats broadcast_buffers=False, ) arguments = {} arguments["iteration"] = 0 output_dir = cfg.OUTPUT_DIR save_to_disk = get_rank() == 0 checkpointer = DetectronCheckpointer( cfg, model, optimizer, scheduler, output_dir, save_to_disk ) # ############################## add by hui ####################### print(cfg.MODEL.WEIGHT) print(checkpointer.has_checkpoint()) # pretrain_checkpoint = torch.load(cfg.MODEL.WEIGHT, map_location=torch.device("cpu")) ################################################################## extra_checkpoint_data = checkpointer.load(cfg.MODEL.WEIGHT) arguments.update(extra_checkpoint_data) data_loader = make_data_loader( cfg, is_train=True, is_distributed=distributed, start_iter=arguments["iteration"], ) checkpoint_period = cfg.SOLVER.CHECKPOINT_PERIOD # ################################################ change by hui ################################################ inference_trainer.do_train( model, data_loader, optimizer, scheduler, checkpointer, device, checkpoint_period, arguments, test_func=run_test, cfg=cfg, distributed=distributed ) ################################################################################################ return model def run_test(cfg, model, distributed): if distributed: model = model.module torch.cuda.empty_cache() # TODO check if it helps iou_types = ("bbox",) if cfg.MODEL.MASK_ON: iou_types = iou_types + ("segm",) if cfg.MODEL.KEYPOINT_ON: iou_types = iou_types + ("keypoints",) output_folders = [None] * len(cfg.DATASETS.TEST) dataset_names = cfg.DATASETS.TEST if cfg.OUTPUT_DIR: for idx, dataset_name in enumerate(dataset_names): output_folder = os.path.join(cfg.OUTPUT_DIR, "inference", dataset_name) mkdir(output_folder) output_folders[idx] = output_folder data_loaders_val = make_data_loader(cfg, is_train=False, is_distributed=distributed) for output_folder, dataset_name, data_loader_val in zip(output_folders, dataset_names, data_loaders_val): inference( model, data_loader_val, dataset_name=dataset_name, iou_types=iou_types, box_only=False if cfg.MODEL.FCOS_ON or cfg.MODEL.RETINANET_ON or cfg.MODEL.GAU_ON else cfg.MODEL.RPN_ONLY, # changed for fcos device=cfg.MODEL.DEVICE, expected_results=cfg.TEST.EXPECTED_RESULTS, expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL, output_folder=output_folder, ignore_uncertain=cfg.TEST.IGNORE_UNCERTAIN, use_iod_for_ignore=cfg.TEST.USE_IOD_FOR_IGNORE, eval_standard=cfg.TEST.COCO_EVALUATE_STANDARD, use_last_prediction=cfg.TEST.DEBUG.USE_LAST_PREDICTION, evaluate_method=cfg.TEST.EVALUATE_METHOD, voc_iou_ths=cfg.TEST.VOC_IOU_THS, gt_file={'merge': cfg.TEST.MERGE_GT_FILE, 'sub': DatasetCatalog.DATA_DIR + '/' + DatasetCatalog.DATASETS[dataset_name]["ann_file"]}, use_ignore_attr=cfg.TEST.USE_IGNORE_ATTR ) synchronize() # ################################################ add by hui ################################################# def adaptive_config_change(name, old, new): if old == new: return print(' {:<20} {} --> {}'.format(name, old, new)) cfg.merge_from_list([name, new]) # ################################################################################################# def main(): parser = argparse.ArgumentParser(description="PyTorch Object Detection Training") parser.add_argument( "--config-file", default="", metavar="FILE", help="path to config file", type=str, ) parser.add_argument("--local_rank", type=int, default=0) parser.add_argument( "--skip-test", dest="skip_test", help="Do not test the final model", action="store_true", default=True # add by hui ) # ################################################ add by hui ################################################# parser.add_argument( "--temp", help="whether generate to temp output", default=False, type=bool ) # ################################################################################################# parser.add_argument( "opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER, ) args = parser.parse_args() num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1 args.distributed = num_gpus > 1 if args.distributed: torch.cuda.set_device(args.local_rank) torch.distributed.init_process_group( backend="nccl", init_method="env://" ) synchronize() cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) # ################### change by hui ################################################# if args.temp: if os.path.exists("./outputs/temp"): shutil.rmtree('./outputs/temp') adaptive_config_change("OUTPUT_DIR", cfg.OUTPUT_DIR, './outputs/temp') cfg.freeze() some_pre_deal() ################################################################################################## output_dir = cfg.OUTPUT_DIR if output_dir: mkdir(output_dir) logger = setup_logger("maskrcnn_benchmark", output_dir, get_rank()) logger.info("Using {} GPUs".format(num_gpus)) logger.info(args) logger.info("Collecting env info (might take some time)") logger.info("\n" + collect_env_info()) logger.info("Loaded configuration file {}".format(args.config_file)) with open(args.config_file, "r") as cf: config_str = "\n" + cf.read() logger.info(config_str) logger.info("Running with config:\n{}".format(cfg)) model = train(cfg, args.local_rank, args.distributed) if not args.skip_test: run_test(cfg, model, args.distributed) # ################################################ add by hui ################################################# def some_pre_deal(): """add by hui""" from PIL import ImageFile # add by hui ImageFile.LOAD_TRUNCATED_IMAGES = True # add by hui assert cfg.SOLVER.NUM_GPU == torch.cuda.device_count(), 'NUM_GPU is not equal to visible GPU count {} vs {}.'\ .format(cfg.SOLVER.NUM_GPU, torch.cuda.device_count()) ################################################################################################## if __name__ == "__main__": main()