models/replknet.py (84 lines of code) (raw):

# Copyright (c) Alibaba, Inc. and its affiliates. import torch import torch.nn as nn import sys import os def get_conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias): if type(kernel_size) is int: use_large_impl = kernel_size > 5 else: assert len(kernel_size) == 2 and kernel_size[0] == kernel_size[1] use_large_impl = kernel_size[0] > 5 has_large_impl = 'LARGE_KERNEL_CONV_IMPL' in os.environ use_large_impl = False # False is faster when the batch-size is small and resolution is large if has_large_impl and use_large_impl and in_channels == out_channels and out_channels == groups and stride == 1 and padding == kernel_size // 2 and dilation == 1: sys.path.append(os.environ['LARGE_KERNEL_CONV_IMPL']) # Please follow the instructions https://github.com/DingXiaoH/RepLKNet-pytorch/blob/main/README.md # export LARGE_KERNEL_CONV_IMPL=absolute_path_to_where_you_cloned_the_example (i.e., depthwise_conv2d_implicit_gemm.py) # TODO more efficient PyTorch implementations of large-kernel convolutions. Pull requests are welcomed. # Or you may try MegEngine. We have integrated an efficient implementation into MegEngine and it will automatically use it. from depthwise_conv2d_implicit_gemm import DepthWiseConv2dImplicitGEMM return DepthWiseConv2dImplicitGEMM(in_channels, kernel_size, bias=bias) else: return nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias) def conv_bn(in_channels, out_channels, kernel_size, stride, padding, groups, dilation=1): if padding is None: padding = kernel_size // 2 result = nn.Sequential() result.add_module('conv', get_conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=False)) result.add_module('bn', nn.BatchNorm2d(out_channels)) return result def fuse_bn(conv, bn): kernel = conv.weight running_mean = bn.running_mean running_var = bn.running_var gamma = bn.weight beta = bn.bias eps = bn.eps std = (running_var + eps).sqrt() t = (gamma / std).reshape(-1, 1, 1, 1) return kernel * t, beta - running_mean * gamma / std class RepLKConv(nn.Module): # Re-param Depthwise LargeKernel convolution def __init__(self, in_channels, out_channels, kernel_size, stride, act=True, small_kernel=None, small_kernel_merged=False): super(RepLKConv, self).__init__() self.kernel_size = kernel_size self.small_kernel = small_kernel # We assume the conv does not change the feature map size, so padding = k//2. Otherwise, you may configure padding as you wish, and change the padding of small_conv accordingly. padding = kernel_size // 2 groups = in_channels if small_kernel_merged: self.lkb_reparam = get_conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=1, groups=groups, bias=True) else: assert in_channels == out_channels == groups self.lkb_origin = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=1, groups=groups) if small_kernel is not None: assert small_kernel <= kernel_size, 'The kernel size for re-param cannot be larger than the large kernel!' self.small_conv = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=small_kernel, stride=stride, padding=small_kernel//2, groups=groups, dilation=1) self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity()) def forward(self, inputs): if hasattr(self, 'lkb_reparam'): out = self.lkb_reparam(inputs) else: # print(inputs.device, next(self.lkb_origin.named_parameters())[1].device) out = self.lkb_origin(inputs) if hasattr(self, 'small_conv'): out += self.small_conv(inputs) return self.act(out) def get_equivalent_kernel_bias(self): eq_k, eq_b = fuse_bn(self.lkb_origin.conv, self.lkb_origin.bn) if hasattr(self, 'small_conv'): small_k, small_b = fuse_bn(self.small_conv.conv, self.small_conv.bn) eq_b += small_b # add to the central part eq_k += nn.functional.pad(small_k, [(self.kernel_size - self.small_kernel) // 2] * 4) return eq_k, eq_b def merge_kernel(self): eq_k, eq_b = self.get_equivalent_kernel_bias() self.lkb_reparam = get_conv2d(in_channels=self.lkb_origin.conv.in_channels, out_channels=self.lkb_origin.conv.out_channels, kernel_size=self.lkb_origin.conv.kernel_size, stride=self.lkb_origin.conv.stride, padding=self.lkb_origin.conv.padding, dilation=self.lkb_origin.conv.dilation, groups=self.lkb_origin.conv.groups, bias=True) self.lkb_reparam.weight.data = eq_k self.lkb_reparam.bias.data = eq_b self.__delattr__('lkb_origin') if hasattr(self, 'small_conv'): self.__delattr__('small_conv')