models/yolo.py (502 lines of code) (raw):
"""YOLOv5-specific modules
Usage:
$ python path/to/models/yolo.py --cfg yolov5s.yaml
"""
# Copyright (c) Alibaba, Inc. and its affiliates.
import argparse
import logging
import sys
from copy import deepcopy
from pathlib import Path
import warnings
sys.path.append(Path(__file__).parent.parent.absolute().__str__()) # to run '$ python *.py' files in subdirectories
logger = logging.getLogger(__name__)
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from models.common import *
from models.replknet import *
try:
from models.gpvit import *
except:
warnings.warn('Package mmdet is not installed. You can follow https://github.com/ChenhongyiYang/GPViT to install dependencies.')
SpatialPriorModule = GPViTAdapterSingleStageESOD = None
from models.spconv import SPYOLOv5Head, SPYOLOv6Head
from models.experimental import *
from utils.autoanchor import check_anchor_order
from utils.general import make_divisible, check_file, set_logging, xyxy2xywh
from utils.torch_utils import time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, \
select_device, copy_attr
try:
import thop # for FLOPs computation
except ImportError:
thop = None
class Detect(nn.Module):
stride = None # strides computed during build
onnx_dynamic = False # ONNX export parameter
def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer
super(Detect, self).__init__()
self.nc = nc # number of classes
self.no = nc + 5 # number of outputs per anchor
self.nl = len(anchors) # number of detection layers
self.na = len(anchors[0]) // 2 # number of anchors
self.grid = [torch.zeros(1)] * self.nl # init grid
a = torch.tensor(anchors).float().view(self.nl, -1, 2)
self.register_buffer('anchors', a) # shape(nl,na,2)
self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
# self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
self.m = get_decoupled_heads(ch, self.nc, self.na) # decoupled head
self.inplace = inplace # use in-place ops (e.g. slice assignment)
self.sparse = False
self.register_buffer('sparse_gird', torch.zeros(1))
def set_sparse(self):
sp_dict = {nn.Conv2d: SPYOLOv5Head, YOLOv6Head: SPYOLOv6Head}
sp_head = sp_dict[type(self.m[0])]
self.m = nn.ModuleList(sp_head(m) for m in self.m)
self.sparse = True
@torch.no_grad()
def get_indices(self, offsets, mask, thresh=0.3):
device, dtype = mask.device, mask.dtype
if torch.max(mask) > 1. or torch.min(mask) < 0.:
mask = mask.detach().sigmoid()
patch_w, patch_h = offsets[0, 3:5] - offsets[0, 1:3]
if not hasattr(self, 'sparse_gird') or self.sparse_gird is None or self.sparse_gird[0].shape != (1,patch_h,patch_w):
yv, xv = torch.meshgrid([torch.arange(patch_h), torch.arange(patch_w)])
yv, xv = yv.to(device), xv.to(device)
self.sparse_gird = torch.stack((torch.zeros_like(yv), yv, xv)).view(3,1,patch_h,patch_w) # shape(1,ph,pw)
gb, gy, gx = self.sparse_gird
ob1, ox1, oy1 = offsets[:, :3].unsqueeze(-1).chunk(3, dim=1) # shape(n,1,1)
ob, ox, oy = (ob1 + gb).view(-1), (ox1 + gx).view(-1), (oy1 + gy).view(-1)
maxima = F.max_pool2d(mask, 3, stride=1, padding=1) == mask
response = mask >= thresh
indices = (maxima & response).to(dtype)
indices = F.max_pool2d(indices, 3, stride=1, padding=1) # expansion
slices = indices[ob, 0, oy, ox].view(offsets.shape[0], 1, patch_h, patch_w)
indices_per_layer = []
for i in range(self.nl):
s = 2 ** i
if i != 0:
slices_i = F.max_pool2d(slices, s, stride=s, padding=0)
slices_i = F.max_pool2d(slices_i, 3, stride=1, padding=1) # expansion
else:
slices_i = slices
indices_per_layer.append(torch.nonzero(slices_i[:, 0, :, :]))
###################
# indices_per_layer = []
# for i in range(self.nl):
# s = 2 ** i
# if s > 1:
# # TODO: size-adaptive?
# mask_i = F.avg_pool2d(mask, s, stride=s, padding=0)
# # mask_i = F.max_pool2d(mask, s, stride=s, padding=0)
# else:
# mask_i = mask
# maxima = F.max_pool2d(mask_i, 3, stride=1, padding=1) == mask_i
# response = mask_i > thresh
# indices = (maxima & response).float()
# indices = F.max_pool2d(indices, 3, stride=1, padding=1) # expansion for 3x3 conv
# sw, sh = patch_w // s, patch_h // s
# ob, ox, oy = (ob1 + gb[:,:sh,:sw]).view(-1), (ox1//s + gx[:,:sh,:sw]).view(-1), (oy1//s + gy[:,:sh,:sw]).view(-1)
# slices = indices[ob, 0, oy, ox].view(offsets.shape[0], sh, sw)
# indices_per_layer.append(torch.nonzero(slices))
return indices_per_layer
def forward(self, x):
# x = x.copy() # for profiling
masks, offsets, indices_per_layer = None, None, None
if isinstance(x, tuple):
if len(x) == 2:
x, offsets = x # offsets(bi,x1,y1,x2,y2)
else:
x, offsets, masks = x
assert len(masks) == 1 and not isinstance(masks, torch.Tensor)
if offsets is not None and hasattr(self, 'sparse') and self.sparse:
indices_per_layer = self.get_indices(offsets, masks[0])
if offsets is not None:
img_bs = torch.max(offsets[:, 0]).int().item() + 1
else:
img_bs = x[0].shape[0]
else:
img_bs = x[0].shape[0]
device = x[0].device
z = [] # inference output
patch_offsets = []
for i in range(self.nl):
# if len(x) > self.nl:
# hid_feat_i = F.max_pool2d(x[self.nl * 2 - 1 - i], kernel_size=8, stride=8, padding=0) # 这里有一个倒序关系
# x[i] = torch.cat((x[i], hid_feat_i), dim=1)
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
if offsets is not None:
r = (2 ** (i - 1)) if self.nl == 4 else 2 ** i
patch_off = torch.cat((offsets[:, :1], offsets[:, 1:] / r), dim=1) # TODO: from 4 to 32
patch_off_xy = patch_off[:, 1:3].view(-1, 1, 1, 1, 2)
patch_offsets.append(patch_off)
if indices_per_layer is not None:
sp_x = self.m[i](x[i], indices_per_layer[i]) # sparse conv
# x[i] = sp_x.dense(channels_first=True) deprecated # for training
else:
sp_x = None
x[i] = self.m[i](x[i]) # conv
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
if not self.training: # inference
if self.grid[i].shape[2:4] != (ny, nx) or self.onnx_dynamic:
self.grid[i] = self._make_grid(nx, ny).to(device)
if sp_x is not None:
y = sp_x.features.sigmoid().view(-1, self.na, self.no)
bi, yi, xi = sp_x.indices.long().T
assert offsets is not None
grid_off = self.grid[i][0, 0, yi, xi].view(-1, 1, 2) + patch_off_xy[bi, ...].view(-1, 1, 2)
anch_wh = self.anchor_grid[i].view(1, self.na, 2)
batch_ind = offsets[bi, 0] # [num_patches, 5] --> [num_objects, 5], compatible for box concat
else:
y = x[i].sigmoid()
anch_wh = self.anchor_grid[i].view(1, self.na, 1, 1, 2)
if offsets is not None:
grid_off = self.grid[i] + patch_off_xy
batch_ind = offsets[:, 0]
else:
grid_off = self.grid[i]
batch_ind = None
if self.inplace:
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + grid_off) * self.stride[i] # xy
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * anch_wh # wh
else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
xy = (y[..., 0:2] * 2. - 0.5 + grid_off) * self.stride[i] # xy
wh = (y[..., 2:4] * 2) ** 2 * anch_wh # wh
y = torch.cat((xy, wh, y[..., 4:]), -1)
# y[..., 4] = 1.0
if offsets is not None:
pbox = []
for bi in range(img_bs):
pbox_bi = y[batch_ind == bi]
np = len(pbox_bi)
if np:
pbox.append(pbox_bi.view(-1, self.no))
else:
pbox.append(torch.zeros((0, self.no), device=device))
max_pnum = max([len(boxes) for boxes in pbox])
z.append(torch.stack(
[torch.cat((boxes, torch.zeros((max_pnum - len(boxes), self.no), device=device))) for boxes in pbox]
))
else:
z.append(y.view(bs, -1, self.no))
if offsets is not None:
x = (x, patch_offsets)
return x if self.training else (torch.cat(z, 1), x)
@staticmethod
def _make_grid(nx=20, ny=20):
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
class Segmenter(nn.Module):
def __init__(self, nc=10, ch=()):
super(Segmenter, self).__init__()
self.m = nn.ModuleList(nn.Conv2d(x, nc, 1) for x in ch) # output conv
def forward(self, x):
return [self.m[i](x[i]) for i in range(len(x))]
class Center(nn.Module):
def __init__(self, nc=80, ch=()): # detection layer
super(Center, self).__init__()
self.nc = nc # number of classes
self.no = nc + 4 # number of outputs
self.nl = 1
self.na = 0
self.anchors = None
self.anchor_grid = None
self.grid = torch.zeros(1)
self.b = torch.zeros(0)
self.c = torch.zeros(0)
self.stride = torch.tensor([4, 32]) # fake
assert len(ch) == 1
ch = ch[0]
self.m = nn.ModuleList([
nn.Sequential( # hm
nn.Conv2d(ch, ch, kernel_size=3, stride=1, padding=1, bias=True),
nn.ReLU(inplace=True),
nn.Conv2d(ch, nc, kernel_size=1, stride=1, padding=0, bias=True),
),
nn.Sequential( # wh
nn.Conv2d(ch, ch, kernel_size=3, stride=1, padding=1, bias=True),
nn.ReLU(inplace=True),
nn.Conv2d(ch, 2, kernel_size=1, stride=1, padding=0, bias=True),
nn.ReLU(inplace=True),
),
nn.Sequential( # reg
nn.Conv2d(ch, ch, kernel_size=3, stride=1, padding=1, bias=True),
nn.ReLU(inplace=True),
nn.Conv2d(ch, 2, kernel_size=1, stride=1, padding=0, bias=True),
nn.ReLU(inplace=True),
),
]) # output convs
self.m[0][-1].bias.data.fill_(-2.19) # hm, expect 0.01
def forward(self, x):
assert isinstance(x, tuple)
x, offsets = x # offsets(bi,x1,y1,x2,y2)
assert len(x) == 1
x = x[0]
hm, wh, reg = [self.m[i](x) for i in range(3)]
# offsets = torch.cat((offsets[:, :1], offsets[:, 1:] * 2.), dim=1)
if not self.training: # inference
nb, nc, ny, nx = hm.shape
device = hm.device
wh_ = wh.permute(0, 2, 3, 1).contiguous()
reg_ = reg.permute(0, 2, 3, 1).contiguous()
if self.grid.shape[1:2] != wh_.shape[1:2]:
self.grid = self._make_grid(nx, ny).to(x.device)
# [nb, ny, nx, 4], absolute pixel relative to input size
if offsets is not None:
offsets_xy = offsets[:, 1:3].view(-1, 1, 1, 2) * 2
bbox = torch.cat([self.grid + offsets_xy + reg_ - wh_ / 2.,
self.grid + offsets_xy + reg_ + wh_ / 2.], dim=-1)
else:
bbox = torch.cat([self.grid + reg_ - wh_ / 2., self.grid + reg_ + wh_ / 2.], dim=-1)
# no clamp
# bbox[..., [0, 2]].clamp_(0, nx)
# bbox[..., [1, 3]].clamp_(0, ny)
# [nb, nc, ny, nx, 4]
# print(self.grid.shape, wh_.shape, hm.shape, offsets_xy.shape, bbox.shape)
bbox = bbox.view(nb, 1, ny, nx, 4).repeat((1, nc, 1, 1, 1)) * self.stride[0]
if self.c.shape[:-1] != hm.shape:
# [nb, nc, ny, nx, 1]
self.c = torch.arange(nc).to(x.device).view(1, nc, 1, 1, 1).repeat((nb, 1, ny, nx, 1))
self.b = offsets[:, :1].view(nb, 1, 1, 1, 1).repeat((1, nc, ny, nx, 1))
hm_ = hm.sigmoid()
hmax = F.max_pool2d(hm_, 3, stride=1, padding=1)
maxima = hmax == hm_
# hmax_cls = torch.argmax(hm_, dim=1, keepdim=True)
# maxima_class = hmax_cls == self.c[..., 0]
# maxima &= maxima_class
# [n, 6]
preds = torch.cat([bbox[maxima], hm_[maxima].view(-1, 1), self.c[maxima]], dim=1)
bi = self.b[maxima][:, 0]
pbox = []
for i in range(torch.max(bi).int().item() + 1):
pbox_bi = preds[bi == i]
# topk_indices = torch.argsort(pbox_bi[:, 4], descending=True)[:500]
if len(pbox_bi):
pbox.append(
torch.cat((xyxy2xywh(pbox_bi[:, :4]), pbox_bi[:, 4:5],
F.one_hot(pbox_bi[:, 5].long(), self.nc)), dim=1)
)
else:
pbox.append(torch.zeros((0, 5 + self.nc), device=device))
max_pnum = max([len(boxes) for boxes in pbox])
predictions = torch.stack(
[torch.cat((boxes, torch.zeros((max_pnum - len(boxes), 5 + self.nc), device=device))) for boxes in pbox]
)
else:
predictions = None
x = ((hm, wh, reg), [offsets]) # for consistency when testing
return x if self.training else (predictions, x)
@staticmethod
def _make_grid(nx=20, ny=20):
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
return torch.stack((xv, yv), 2).view((1, ny, nx, 2)).float()
class Model(nn.Module):
def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes
super(Model, self).__init__()
if isinstance(cfg, dict):
self.yaml = cfg # model dict
else: # is *.yaml
import yaml # for torch hub
self.yaml_file = Path(cfg).name
with open(cfg) as f:
self.yaml = yaml.safe_load(f) # model dict
# Define model
ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
if nc and nc != self.yaml['nc']:
logger.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
self.yaml['nc'] = nc # override yaml value
if anchors:
logger.info(f'Overriding model.yaml anchors with anchors={anchors}')
self.yaml['anchors'] = round(anchors) # override yaml value
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
self.names = [str(i) for i in range(self.yaml['nc'])] # default names
self.inplace = self.yaml.get('inplace', True)
# logger.info([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])
# Build strides, anchors
m = self.model[-1] # Detect()
if isinstance(m, Detect):
s = 256 # 2x min stride
m.inplace = self.inplace
# TODO
# m.stride = torch.tensor([ 4., 8., 16., 32.])
m.stride = torch.tensor([ 8., 16., 32.])
# m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
m.anchors /= m.stride.view(-1, 1, 1)
check_anchor_order(m)
self.stride = m.stride
self._initialize_biases() # only run once
# logger.info('Strides: %s' % m.stride.tolist())
elif isinstance(m, Center):
# m.stride = torch.tensor(m.stride) # no forward
self.stride = m.stride
# elif isinstance(m, Detect2): deprecated
# s = 256 # 2x min stride
# m.inplace = self.inplace
# # m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
# self.forward(torch.zeros(1, ch, s, s)) # forward
# m.stride = torch.tensor(m.stride) # no forward
# # m.anchors /= m.stride.view(-1, 1, 1) 这里不归一化
# self.stride = m.stride
# Init weights, biases
initialize_weights(self)
try:
self.info()
except:
logger.info('Failed to capture the model info')
logger.info('')
def forward(self, x, augment=False, profile=False, hm_only=False):
if augment:
return self.forward_augment(x) # augmented inference, None
else:
return self.forward_once(x, profile, hm_only=hm_only) # single-scale inference, train
def forward_augment(self, x):
img_size = x.shape[-2:] # height, width
s = [1, 0.83, 0.67] # scales
f = [None, 3, None] # flips (2-ud, 3-lr)
y = [] # outputs
for si, fi in zip(s, f):
xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
yi = self.forward_once(xi)[0] # forward
# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
yi = self._descale_pred(yi, fi, si, img_size)
y.append(yi)
return torch.cat(y, 1), None # augmented inference, train
def forward_once(self, x, profile=False, hm_only=False):
y, dt = [], [] # outputs
masks, pred_masks, offsets = None, None, None
heatmap = None
if isinstance(x, tuple):
x, masks = x # ground-truth masks
x0 = x
B, C, H, W = x.shape
for mi, m in enumerate(self.model):
if m.f != -1: # if not from previous layer
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else (x0 if j == -100 else y[j]) for j in m.f] # from earlier layers
if profile:
o = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs
t = time_synchronized()
for _ in range(10):
_ = m(x)
dt.append((time_synchronized() - t) * 100)
if m == self.model[0]:
logger.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} {'module'}")
logger.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}')
if isinstance(m, HeatMapParser) and masks is not None:
x = (x[0], masks)
elif type(m) in [Detect, Center] and offsets is not None:
x = (x, offsets)
x = (*x, masks if masks is not None else pred_masks)
elif isinstance(m, MaskedC3TR):
x = (x, heatmap)
elif isinstance(m, Token2Image):
x = [x, (H, W)]
x = m(x) # run
if isinstance(m, Segmenter):
pred_masks = x
if hm_only:
return (None, None), pred_masks
if masks is None:
masks = pred_masks
elif isinstance(m, HeatMapParser):
if isinstance(x, torch.Tensor):
offsets = x
if offsets.size(0) == 0:
return (None, None), pred_masks
elif isinstance(x[1], torch.Tensor):
x, offsets = x
if len(x) == 0:
return (None, None), pred_masks
else:
x, thresh = x
heatmap = pred_masks[0].detach().sigmoid()
heatmap = heatmap > thresh
y.append(x if m.i in self.save else None) # save output
if profile:
logger.info('%.1fms total' % sum(dt))
return x, pred_masks
def _descale_pred(self, p, flips, scale, img_size):
# de-scale predictions following augmented inference (inverse operation)
if self.inplace:
p[..., :4] /= scale # de-scale
if flips == 2:
p[..., 1] = img_size[0] - p[..., 1] # de-flip ud
elif flips == 3:
p[..., 0] = img_size[1] - p[..., 0] # de-flip lr
else:
x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale # de-scale
if flips == 2:
y = img_size[0] - y # de-flip ud
elif flips == 3:
x = img_size[1] - x # de-flip lr
p = torch.cat((x, y, wh, p[..., 4:]), -1)
return p
def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
# https://arxiv.org/abs/1708.02002 section 3.3
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
m = self.model[-1] # Detect() module
try:
for mi, s in zip(m.m, m.stride): # from YOLOv5 head
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
except AttributeError:
for mi, s in zip(m.m, m.stride): # from decoupled head
mi.obj_pred.bias.data.fill_(math.log(8 / (640 / s) ** 2)) # obj (8 objects per 640 image)
mi.cls_pred.bias.data.fill_(math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()))
for m_ in self.model:
if str(m_.type) == 'models.yolo.Segmenter': # stupid
for mi in m_.m:
b = mi.bias.view(-1)
b.data += math.log(0.6 / (m.nc - 0.99) if cf is None else torch.log(cf / cf.sum())) # cls
mi.bias = torch.nn.Parameter(b, requires_grad=True)
break
def _print_biases(self):
m = self.model[-1] # Detect() module
for mi in m.m: # from
b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
logger.info(
('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
# def _print_weights(self):
# for m in self.model.modules():
# if type(m) is Bottleneck:
# logger.info('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights
def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
logger.info('Fusing layers... ')
for m in self.model.modules():
if type(m) is Conv and hasattr(m, 'bn'):
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
delattr(m, 'bn') # remove batchnorm
m.forward = m.fuseforward # update forward
try:
self.info()
except:
print('Failed to capture the model info')
return self
def nms(self, mode=True): # add or remove NMS module
present = type(self.model[-1]) is NMS # last layer is NMS
if mode and not present:
logger.info('Adding NMS... ')
m = NMS() # module
m.f = -1 # from
m.i = self.model[-1].i + 1 # index
self.model.add_module(name='%s' % m.i, module=m) # add
self.eval()
elif not mode and present:
logger.info('Removing NMS... ')
self.model = self.model[:-1] # remove
return self
def autoshape(self): # add AutoShape module
logger.info('Adding AutoShape... ')
m = AutoShape(self) # wrap model
copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) # copy attributes
return m
def info(self, verbose=False, img_size=640): # print model information
model_info(self, verbose, img_size)
def parse_model(d, ch): # model_dict, input_channels(3)
logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
m = eval(m) if isinstance(m, str) else m # eval strings
for j, a in enumerate(args):
try:
args[j] = eval(a) if isinstance(a, str) else a # eval strings
except:
pass
n = max(round(n * gd), 1) if n > 1 else n # depth gain
if m in [nn.Conv2d, Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, ASPP, SPPF,
DWConv, DCN, RepLKConv, MixConv2d, Focus, Blur, CrossConv,
BottleneckCSP, C3, C3TR, MaskedC3TR, C2f, ResBlockLayer, RTMDetCSPLayer,
HeatMapParser]:
c2 = args[0]
if c2 != no and 'GPViTAdapterSingleStageESOD' not in [_x[2] for _x in d['backbone']]: # if not output
c2 = make_divisible(c2 * gw, 8)
if m is HeatMapParser:
args = [c2, *args[1:]]
else:
args = [ch[f], c2, *args[1:]]
if m in [BottleneckCSP, C3, C3TR, MaskedC3TR, C2f, RTMDetCSPLayer]:
args.insert(2, n) # number of repeats
n = 1
elif m is nn.BatchNorm2d:
args = [ch[f]]
elif m is Concat:
c2 = sum([ch[x] for x in f])
elif m in [Add, nn.Identity]:
pass
elif m in [Detect, Segmenter]: # Detect2 deprecated
args.append([ch[x] for x in f])
if len(args) > 1 and isinstance(args[1], int): # number of anchors
args[1] = [list(range(args[1] * 2))] * len(f)
elif m is Center:
args.append([ch[x] for x in f])
elif m is SpatialPriorModule:
c2 = args[0] * 2
elif m is GPViTAdapterSingleStageESOD:
pass
elif m is Indexer:
c2 = args[0]
args = args[1:]
elif m is Contract:
c2 = ch[f] * args[0] ** 2
elif m is Expand:
c2 = ch[f] // args[0] ** 2
else:
c2 = ch[f]
m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module
t = str(m)[8:-2].replace('__main__.', '') # module type
np = sum([x.numel() for x in m_.parameters()]) # number params
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
logger.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x not in [-1, -100]) # append to savelist
layers.append(m_)
if i == 0:
ch = []
ch.append(c2)
return nn.Sequential(*layers), sorted(save)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
opt = parser.parse_args()
opt.cfg = check_file(opt.cfg) # check file
set_logging()
device = select_device(opt.device)
# Create model
model = Model(opt.cfg).to(device)
model.train()
# Profile
# img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 320, 320).to(device)
# y = model(img, profile=True)
# Tensorboard (not working https://github.com/ultralytics/yolov5/issues/2898)
# from torch.utils.tensorboard import SummaryWriter
# tb_writer = SummaryWriter('.')
# logger.info("Run 'tensorboard --logdir=models' to view tensorboard at http://localhost:6006/")
# tb_writer.add_graph(torch.jit.trace(model, img, strict=False), []) # add model graph
# tb_writer.add_image('test', img[0], dataformats='CWH') # add model to tensorboard