models/yolo.py (502 lines of code) (raw):

"""YOLOv5-specific modules Usage: $ python path/to/models/yolo.py --cfg yolov5s.yaml """ # Copyright (c) Alibaba, Inc. and its affiliates. import argparse import logging import sys from copy import deepcopy from pathlib import Path import warnings sys.path.append(Path(__file__).parent.parent.absolute().__str__()) # to run '$ python *.py' files in subdirectories logger = logging.getLogger(__name__) import torch import torch.nn as nn import torch.nn.functional as F import math from models.common import * from models.replknet import * try: from models.gpvit import * except: warnings.warn('Package mmdet is not installed. You can follow https://github.com/ChenhongyiYang/GPViT to install dependencies.') SpatialPriorModule = GPViTAdapterSingleStageESOD = None from models.spconv import SPYOLOv5Head, SPYOLOv6Head from models.experimental import * from utils.autoanchor import check_anchor_order from utils.general import make_divisible, check_file, set_logging, xyxy2xywh from utils.torch_utils import time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, \ select_device, copy_attr try: import thop # for FLOPs computation except ImportError: thop = None class Detect(nn.Module): stride = None # strides computed during build onnx_dynamic = False # ONNX export parameter def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer super(Detect, self).__init__() self.nc = nc # number of classes self.no = nc + 5 # number of outputs per anchor self.nl = len(anchors) # number of detection layers self.na = len(anchors[0]) // 2 # number of anchors self.grid = [torch.zeros(1)] * self.nl # init grid a = torch.tensor(anchors).float().view(self.nl, -1, 2) self.register_buffer('anchors', a) # shape(nl,na,2) self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2) # self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv self.m = get_decoupled_heads(ch, self.nc, self.na) # decoupled head self.inplace = inplace # use in-place ops (e.g. slice assignment) self.sparse = False self.register_buffer('sparse_gird', torch.zeros(1)) def set_sparse(self): sp_dict = {nn.Conv2d: SPYOLOv5Head, YOLOv6Head: SPYOLOv6Head} sp_head = sp_dict[type(self.m[0])] self.m = nn.ModuleList(sp_head(m) for m in self.m) self.sparse = True @torch.no_grad() def get_indices(self, offsets, mask, thresh=0.3): device, dtype = mask.device, mask.dtype if torch.max(mask) > 1. or torch.min(mask) < 0.: mask = mask.detach().sigmoid() patch_w, patch_h = offsets[0, 3:5] - offsets[0, 1:3] if not hasattr(self, 'sparse_gird') or self.sparse_gird is None or self.sparse_gird[0].shape != (1,patch_h,patch_w): yv, xv = torch.meshgrid([torch.arange(patch_h), torch.arange(patch_w)]) yv, xv = yv.to(device), xv.to(device) self.sparse_gird = torch.stack((torch.zeros_like(yv), yv, xv)).view(3,1,patch_h,patch_w) # shape(1,ph,pw) gb, gy, gx = self.sparse_gird ob1, ox1, oy1 = offsets[:, :3].unsqueeze(-1).chunk(3, dim=1) # shape(n,1,1) ob, ox, oy = (ob1 + gb).view(-1), (ox1 + gx).view(-1), (oy1 + gy).view(-1) maxima = F.max_pool2d(mask, 3, stride=1, padding=1) == mask response = mask >= thresh indices = (maxima & response).to(dtype) indices = F.max_pool2d(indices, 3, stride=1, padding=1) # expansion slices = indices[ob, 0, oy, ox].view(offsets.shape[0], 1, patch_h, patch_w) indices_per_layer = [] for i in range(self.nl): s = 2 ** i if i != 0: slices_i = F.max_pool2d(slices, s, stride=s, padding=0) slices_i = F.max_pool2d(slices_i, 3, stride=1, padding=1) # expansion else: slices_i = slices indices_per_layer.append(torch.nonzero(slices_i[:, 0, :, :])) ################### # indices_per_layer = [] # for i in range(self.nl): # s = 2 ** i # if s > 1: # # TODO: size-adaptive? # mask_i = F.avg_pool2d(mask, s, stride=s, padding=0) # # mask_i = F.max_pool2d(mask, s, stride=s, padding=0) # else: # mask_i = mask # maxima = F.max_pool2d(mask_i, 3, stride=1, padding=1) == mask_i # response = mask_i > thresh # indices = (maxima & response).float() # indices = F.max_pool2d(indices, 3, stride=1, padding=1) # expansion for 3x3 conv # sw, sh = patch_w // s, patch_h // s # ob, ox, oy = (ob1 + gb[:,:sh,:sw]).view(-1), (ox1//s + gx[:,:sh,:sw]).view(-1), (oy1//s + gy[:,:sh,:sw]).view(-1) # slices = indices[ob, 0, oy, ox].view(offsets.shape[0], sh, sw) # indices_per_layer.append(torch.nonzero(slices)) return indices_per_layer def forward(self, x): # x = x.copy() # for profiling masks, offsets, indices_per_layer = None, None, None if isinstance(x, tuple): if len(x) == 2: x, offsets = x # offsets(bi,x1,y1,x2,y2) else: x, offsets, masks = x assert len(masks) == 1 and not isinstance(masks, torch.Tensor) if offsets is not None and hasattr(self, 'sparse') and self.sparse: indices_per_layer = self.get_indices(offsets, masks[0]) if offsets is not None: img_bs = torch.max(offsets[:, 0]).int().item() + 1 else: img_bs = x[0].shape[0] else: img_bs = x[0].shape[0] device = x[0].device z = [] # inference output patch_offsets = [] for i in range(self.nl): # if len(x) > self.nl: # hid_feat_i = F.max_pool2d(x[self.nl * 2 - 1 - i], kernel_size=8, stride=8, padding=0) # 这里有一个倒序关系 # x[i] = torch.cat((x[i], hid_feat_i), dim=1) bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) if offsets is not None: r = (2 ** (i - 1)) if self.nl == 4 else 2 ** i patch_off = torch.cat((offsets[:, :1], offsets[:, 1:] / r), dim=1) # TODO: from 4 to 32 patch_off_xy = patch_off[:, 1:3].view(-1, 1, 1, 1, 2) patch_offsets.append(patch_off) if indices_per_layer is not None: sp_x = self.m[i](x[i], indices_per_layer[i]) # sparse conv # x[i] = sp_x.dense(channels_first=True) deprecated # for training else: sp_x = None x[i] = self.m[i](x[i]) # conv x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() if not self.training: # inference if self.grid[i].shape[2:4] != (ny, nx) or self.onnx_dynamic: self.grid[i] = self._make_grid(nx, ny).to(device) if sp_x is not None: y = sp_x.features.sigmoid().view(-1, self.na, self.no) bi, yi, xi = sp_x.indices.long().T assert offsets is not None grid_off = self.grid[i][0, 0, yi, xi].view(-1, 1, 2) + patch_off_xy[bi, ...].view(-1, 1, 2) anch_wh = self.anchor_grid[i].view(1, self.na, 2) batch_ind = offsets[bi, 0] # [num_patches, 5] --> [num_objects, 5], compatible for box concat else: y = x[i].sigmoid() anch_wh = self.anchor_grid[i].view(1, self.na, 1, 1, 2) if offsets is not None: grid_off = self.grid[i] + patch_off_xy batch_ind = offsets[:, 0] else: grid_off = self.grid[i] batch_ind = None if self.inplace: y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + grid_off) * self.stride[i] # xy y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * anch_wh # wh else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953 xy = (y[..., 0:2] * 2. - 0.5 + grid_off) * self.stride[i] # xy wh = (y[..., 2:4] * 2) ** 2 * anch_wh # wh y = torch.cat((xy, wh, y[..., 4:]), -1) # y[..., 4] = 1.0 if offsets is not None: pbox = [] for bi in range(img_bs): pbox_bi = y[batch_ind == bi] np = len(pbox_bi) if np: pbox.append(pbox_bi.view(-1, self.no)) else: pbox.append(torch.zeros((0, self.no), device=device)) max_pnum = max([len(boxes) for boxes in pbox]) z.append(torch.stack( [torch.cat((boxes, torch.zeros((max_pnum - len(boxes), self.no), device=device))) for boxes in pbox] )) else: z.append(y.view(bs, -1, self.no)) if offsets is not None: x = (x, patch_offsets) return x if self.training else (torch.cat(z, 1), x) @staticmethod def _make_grid(nx=20, ny=20): yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float() class Segmenter(nn.Module): def __init__(self, nc=10, ch=()): super(Segmenter, self).__init__() self.m = nn.ModuleList(nn.Conv2d(x, nc, 1) for x in ch) # output conv def forward(self, x): return [self.m[i](x[i]) for i in range(len(x))] class Center(nn.Module): def __init__(self, nc=80, ch=()): # detection layer super(Center, self).__init__() self.nc = nc # number of classes self.no = nc + 4 # number of outputs self.nl = 1 self.na = 0 self.anchors = None self.anchor_grid = None self.grid = torch.zeros(1) self.b = torch.zeros(0) self.c = torch.zeros(0) self.stride = torch.tensor([4, 32]) # fake assert len(ch) == 1 ch = ch[0] self.m = nn.ModuleList([ nn.Sequential( # hm nn.Conv2d(ch, ch, kernel_size=3, stride=1, padding=1, bias=True), nn.ReLU(inplace=True), nn.Conv2d(ch, nc, kernel_size=1, stride=1, padding=0, bias=True), ), nn.Sequential( # wh nn.Conv2d(ch, ch, kernel_size=3, stride=1, padding=1, bias=True), nn.ReLU(inplace=True), nn.Conv2d(ch, 2, kernel_size=1, stride=1, padding=0, bias=True), nn.ReLU(inplace=True), ), nn.Sequential( # reg nn.Conv2d(ch, ch, kernel_size=3, stride=1, padding=1, bias=True), nn.ReLU(inplace=True), nn.Conv2d(ch, 2, kernel_size=1, stride=1, padding=0, bias=True), nn.ReLU(inplace=True), ), ]) # output convs self.m[0][-1].bias.data.fill_(-2.19) # hm, expect 0.01 def forward(self, x): assert isinstance(x, tuple) x, offsets = x # offsets(bi,x1,y1,x2,y2) assert len(x) == 1 x = x[0] hm, wh, reg = [self.m[i](x) for i in range(3)] # offsets = torch.cat((offsets[:, :1], offsets[:, 1:] * 2.), dim=1) if not self.training: # inference nb, nc, ny, nx = hm.shape device = hm.device wh_ = wh.permute(0, 2, 3, 1).contiguous() reg_ = reg.permute(0, 2, 3, 1).contiguous() if self.grid.shape[1:2] != wh_.shape[1:2]: self.grid = self._make_grid(nx, ny).to(x.device) # [nb, ny, nx, 4], absolute pixel relative to input size if offsets is not None: offsets_xy = offsets[:, 1:3].view(-1, 1, 1, 2) * 2 bbox = torch.cat([self.grid + offsets_xy + reg_ - wh_ / 2., self.grid + offsets_xy + reg_ + wh_ / 2.], dim=-1) else: bbox = torch.cat([self.grid + reg_ - wh_ / 2., self.grid + reg_ + wh_ / 2.], dim=-1) # no clamp # bbox[..., [0, 2]].clamp_(0, nx) # bbox[..., [1, 3]].clamp_(0, ny) # [nb, nc, ny, nx, 4] # print(self.grid.shape, wh_.shape, hm.shape, offsets_xy.shape, bbox.shape) bbox = bbox.view(nb, 1, ny, nx, 4).repeat((1, nc, 1, 1, 1)) * self.stride[0] if self.c.shape[:-1] != hm.shape: # [nb, nc, ny, nx, 1] self.c = torch.arange(nc).to(x.device).view(1, nc, 1, 1, 1).repeat((nb, 1, ny, nx, 1)) self.b = offsets[:, :1].view(nb, 1, 1, 1, 1).repeat((1, nc, ny, nx, 1)) hm_ = hm.sigmoid() hmax = F.max_pool2d(hm_, 3, stride=1, padding=1) maxima = hmax == hm_ # hmax_cls = torch.argmax(hm_, dim=1, keepdim=True) # maxima_class = hmax_cls == self.c[..., 0] # maxima &= maxima_class # [n, 6] preds = torch.cat([bbox[maxima], hm_[maxima].view(-1, 1), self.c[maxima]], dim=1) bi = self.b[maxima][:, 0] pbox = [] for i in range(torch.max(bi).int().item() + 1): pbox_bi = preds[bi == i] # topk_indices = torch.argsort(pbox_bi[:, 4], descending=True)[:500] if len(pbox_bi): pbox.append( torch.cat((xyxy2xywh(pbox_bi[:, :4]), pbox_bi[:, 4:5], F.one_hot(pbox_bi[:, 5].long(), self.nc)), dim=1) ) else: pbox.append(torch.zeros((0, 5 + self.nc), device=device)) max_pnum = max([len(boxes) for boxes in pbox]) predictions = torch.stack( [torch.cat((boxes, torch.zeros((max_pnum - len(boxes), 5 + self.nc), device=device))) for boxes in pbox] ) else: predictions = None x = ((hm, wh, reg), [offsets]) # for consistency when testing return x if self.training else (predictions, x) @staticmethod def _make_grid(nx=20, ny=20): yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) return torch.stack((xv, yv), 2).view((1, ny, nx, 2)).float() class Model(nn.Module): def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes super(Model, self).__init__() if isinstance(cfg, dict): self.yaml = cfg # model dict else: # is *.yaml import yaml # for torch hub self.yaml_file = Path(cfg).name with open(cfg) as f: self.yaml = yaml.safe_load(f) # model dict # Define model ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels if nc and nc != self.yaml['nc']: logger.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}") self.yaml['nc'] = nc # override yaml value if anchors: logger.info(f'Overriding model.yaml anchors with anchors={anchors}') self.yaml['anchors'] = round(anchors) # override yaml value self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist self.names = [str(i) for i in range(self.yaml['nc'])] # default names self.inplace = self.yaml.get('inplace', True) # logger.info([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))]) # Build strides, anchors m = self.model[-1] # Detect() if isinstance(m, Detect): s = 256 # 2x min stride m.inplace = self.inplace # TODO # m.stride = torch.tensor([ 4., 8., 16., 32.]) m.stride = torch.tensor([ 8., 16., 32.]) # m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward m.anchors /= m.stride.view(-1, 1, 1) check_anchor_order(m) self.stride = m.stride self._initialize_biases() # only run once # logger.info('Strides: %s' % m.stride.tolist()) elif isinstance(m, Center): # m.stride = torch.tensor(m.stride) # no forward self.stride = m.stride # elif isinstance(m, Detect2): deprecated # s = 256 # 2x min stride # m.inplace = self.inplace # # m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward # self.forward(torch.zeros(1, ch, s, s)) # forward # m.stride = torch.tensor(m.stride) # no forward # # m.anchors /= m.stride.view(-1, 1, 1) 这里不归一化 # self.stride = m.stride # Init weights, biases initialize_weights(self) try: self.info() except: logger.info('Failed to capture the model info') logger.info('') def forward(self, x, augment=False, profile=False, hm_only=False): if augment: return self.forward_augment(x) # augmented inference, None else: return self.forward_once(x, profile, hm_only=hm_only) # single-scale inference, train def forward_augment(self, x): img_size = x.shape[-2:] # height, width s = [1, 0.83, 0.67] # scales f = [None, 3, None] # flips (2-ud, 3-lr) y = [] # outputs for si, fi in zip(s, f): xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max())) yi = self.forward_once(xi)[0] # forward # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save yi = self._descale_pred(yi, fi, si, img_size) y.append(yi) return torch.cat(y, 1), None # augmented inference, train def forward_once(self, x, profile=False, hm_only=False): y, dt = [], [] # outputs masks, pred_masks, offsets = None, None, None heatmap = None if isinstance(x, tuple): x, masks = x # ground-truth masks x0 = x B, C, H, W = x.shape for mi, m in enumerate(self.model): if m.f != -1: # if not from previous layer x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else (x0 if j == -100 else y[j]) for j in m.f] # from earlier layers if profile: o = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs t = time_synchronized() for _ in range(10): _ = m(x) dt.append((time_synchronized() - t) * 100) if m == self.model[0]: logger.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} {'module'}") logger.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}') if isinstance(m, HeatMapParser) and masks is not None: x = (x[0], masks) elif type(m) in [Detect, Center] and offsets is not None: x = (x, offsets) x = (*x, masks if masks is not None else pred_masks) elif isinstance(m, MaskedC3TR): x = (x, heatmap) elif isinstance(m, Token2Image): x = [x, (H, W)] x = m(x) # run if isinstance(m, Segmenter): pred_masks = x if hm_only: return (None, None), pred_masks if masks is None: masks = pred_masks elif isinstance(m, HeatMapParser): if isinstance(x, torch.Tensor): offsets = x if offsets.size(0) == 0: return (None, None), pred_masks elif isinstance(x[1], torch.Tensor): x, offsets = x if len(x) == 0: return (None, None), pred_masks else: x, thresh = x heatmap = pred_masks[0].detach().sigmoid() heatmap = heatmap > thresh y.append(x if m.i in self.save else None) # save output if profile: logger.info('%.1fms total' % sum(dt)) return x, pred_masks def _descale_pred(self, p, flips, scale, img_size): # de-scale predictions following augmented inference (inverse operation) if self.inplace: p[..., :4] /= scale # de-scale if flips == 2: p[..., 1] = img_size[0] - p[..., 1] # de-flip ud elif flips == 3: p[..., 0] = img_size[1] - p[..., 0] # de-flip lr else: x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale # de-scale if flips == 2: y = img_size[0] - y # de-flip ud elif flips == 3: x = img_size[1] - x # de-flip lr p = torch.cat((x, y, wh, p[..., 4:]), -1) return p def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency # https://arxiv.org/abs/1708.02002 section 3.3 # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1. m = self.model[-1] # Detect() module try: for mi, s in zip(m.m, m.stride): # from YOLOv5 head b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85) b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image) b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) except AttributeError: for mi, s in zip(m.m, m.stride): # from decoupled head mi.obj_pred.bias.data.fill_(math.log(8 / (640 / s) ** 2)) # obj (8 objects per 640 image) mi.cls_pred.bias.data.fill_(math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum())) for m_ in self.model: if str(m_.type) == 'models.yolo.Segmenter': # stupid for mi in m_.m: b = mi.bias.view(-1) b.data += math.log(0.6 / (m.nc - 0.99) if cf is None else torch.log(cf / cf.sum())) # cls mi.bias = torch.nn.Parameter(b, requires_grad=True) break def _print_biases(self): m = self.model[-1] # Detect() module for mi in m.m: # from b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85) logger.info( ('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean())) # def _print_weights(self): # for m in self.model.modules(): # if type(m) is Bottleneck: # logger.info('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers logger.info('Fusing layers... ') for m in self.model.modules(): if type(m) is Conv and hasattr(m, 'bn'): m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv delattr(m, 'bn') # remove batchnorm m.forward = m.fuseforward # update forward try: self.info() except: print('Failed to capture the model info') return self def nms(self, mode=True): # add or remove NMS module present = type(self.model[-1]) is NMS # last layer is NMS if mode and not present: logger.info('Adding NMS... ') m = NMS() # module m.f = -1 # from m.i = self.model[-1].i + 1 # index self.model.add_module(name='%s' % m.i, module=m) # add self.eval() elif not mode and present: logger.info('Removing NMS... ') self.model = self.model[:-1] # remove return self def autoshape(self): # add AutoShape module logger.info('Adding AutoShape... ') m = AutoShape(self) # wrap model copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) # copy attributes return m def info(self, verbose=False, img_size=640): # print model information model_info(self, verbose, img_size) def parse_model(d, ch): # model_dict, input_channels(3) logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments')) anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'] na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors no = na * (nc + 5) # number of outputs = anchors * (classes + 5) layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args m = eval(m) if isinstance(m, str) else m # eval strings for j, a in enumerate(args): try: args[j] = eval(a) if isinstance(a, str) else a # eval strings except: pass n = max(round(n * gd), 1) if n > 1 else n # depth gain if m in [nn.Conv2d, Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, ASPP, SPPF, DWConv, DCN, RepLKConv, MixConv2d, Focus, Blur, CrossConv, BottleneckCSP, C3, C3TR, MaskedC3TR, C2f, ResBlockLayer, RTMDetCSPLayer, HeatMapParser]: c2 = args[0] if c2 != no and 'GPViTAdapterSingleStageESOD' not in [_x[2] for _x in d['backbone']]: # if not output c2 = make_divisible(c2 * gw, 8) if m is HeatMapParser: args = [c2, *args[1:]] else: args = [ch[f], c2, *args[1:]] if m in [BottleneckCSP, C3, C3TR, MaskedC3TR, C2f, RTMDetCSPLayer]: args.insert(2, n) # number of repeats n = 1 elif m is nn.BatchNorm2d: args = [ch[f]] elif m is Concat: c2 = sum([ch[x] for x in f]) elif m in [Add, nn.Identity]: pass elif m in [Detect, Segmenter]: # Detect2 deprecated args.append([ch[x] for x in f]) if len(args) > 1 and isinstance(args[1], int): # number of anchors args[1] = [list(range(args[1] * 2))] * len(f) elif m is Center: args.append([ch[x] for x in f]) elif m is SpatialPriorModule: c2 = args[0] * 2 elif m is GPViTAdapterSingleStageESOD: pass elif m is Indexer: c2 = args[0] args = args[1:] elif m is Contract: c2 = ch[f] * args[0] ** 2 elif m is Expand: c2 = ch[f] // args[0] ** 2 else: c2 = ch[f] m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module t = str(m)[8:-2].replace('__main__.', '') # module type np = sum([x.numel() for x in m_.parameters()]) # number params m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params logger.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x not in [-1, -100]) # append to savelist layers.append(m_) if i == 0: ch = [] ch.append(c2) return nn.Sequential(*layers), sorted(save) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml') parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') opt = parser.parse_args() opt.cfg = check_file(opt.cfg) # check file set_logging() device = select_device(opt.device) # Create model model = Model(opt.cfg).to(device) model.train() # Profile # img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 320, 320).to(device) # y = model(img, profile=True) # Tensorboard (not working https://github.com/ultralytics/yolov5/issues/2898) # from torch.utils.tensorboard import SummaryWriter # tb_writer = SummaryWriter('.') # logger.info("Run 'tensorboard --logdir=models' to view tensorboard at http://localhost:6006/") # tb_writer.add_graph(torch.jit.trace(model, img, strict=False), []) # add model graph # tb_writer.add_image('test', img[0], dataformats='CWH') # add model to tensorboard