# Dataset utils and dataloaders
# Copyright (c) Alibaba, Inc. and its affiliates.

import glob
import hashlib
import logging
import math
import os
import random
import shutil
import time
from itertools import repeat
from multiprocessing.pool import ThreadPool, Pool
from pathlib import Path
from threading import Thread

import cv2
import numpy as np
import torch
import torch.nn.functional as F
import yaml
from PIL import Image, ExifTags
from torch.utils.data import Dataset
from tqdm import tqdm
from skimage.measure import block_reduce

from utils.general import check_requirements, check_file, check_dataset, xyxy2xywh, xywh2xyxy, xywhn2xyxy, xyn2xy, \
    segment2box, segments2boxes, resample_segments, clean_str, target2mask
from utils.torch_utils import torch_distributed_zero_first

# Parameters
help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng', 'webp', 'mpo']  # acceptable image suffixes
vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv']  # acceptable video suffixes
num_threads = min(8, os.cpu_count())  # number of multiprocessing threads
logger = logging.getLogger(__name__)

# Get orientation exif tag
for orientation in ExifTags.TAGS.keys():
    if ExifTags.TAGS[orientation] == 'Orientation':
        break


def get_hash(paths):
    # Returns a single hash value of a list of paths (files or dirs)
    size = sum(os.path.getsize(p) for p in paths if os.path.exists(p))  # sizes
    h = hashlib.md5(str(size).encode())  # hash sizes
    h.update(''.join(paths).encode())  # hash paths
    return h.hexdigest()  # return hash


def exif_size(img):
    # Returns exif-corrected PIL size
    s = img.size  # (width, height)
    try:
        rotation = dict(img._getexif().items())[orientation]
        if rotation == 6:  # rotation 270
            s = (s[1], s[0])
        elif rotation == 8:  # rotation 90
            s = (s[1], s[0])
    except:
        pass

    return s


def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False,
                      rank=-1, world_size=1, workers=8, image_weights=False, quad=False, prefix=''):
    # Make sure only the first process in DDP process the dataset first, and the following others can use the cache
    with torch_distributed_zero_first(rank):
        dataset = LoadImagesAndLabels(path, imgsz, batch_size,
                                      augment=augment,  # augment images
                                      hyp=hyp,  # augmentation hyperparameters
                                      rect=rect,  # rectangular training
                                      cache_images=cache,
                                      single_cls=opt.single_cls,
                                      stride=int(stride),
                                      pad=pad,
                                      image_weights=image_weights,
                                      prefix=prefix)

    batch_size = min(batch_size, len(dataset))
    # nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, workers])  # number of workers
    nw = 8
    sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None
    loader = torch.utils.data.DataLoader if image_weights else InfiniteDataLoader
    # Use torch.utils.data.DataLoader() if dataset.properties will update during training else InfiniteDataLoader()
    dataloader = loader(dataset,
                        batch_size=batch_size,
                        num_workers=nw,
                        sampler=sampler,
                        pin_memory=True,
                        collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn)
    return dataloader, dataset


class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader):
    """ Dataloader that reuses workers

    Uses same syntax as vanilla DataLoader
    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
        self.iterator = super().__iter__()

    def __len__(self):
        return len(self.batch_sampler.sampler)

    def __iter__(self):
        for i in range(len(self)):
            yield next(self.iterator)


class _RepeatSampler(object):
    """ Sampler that repeats forever

    Args:
        sampler (Sampler)
    """

    def __init__(self, sampler):
        self.sampler = sampler

    def __iter__(self):
        while True:
            yield from iter(self.sampler)


class LoadImages:  # for inference
    def __init__(self, path, img_size=640, stride=32):
        p = str(Path(path).absolute())  # os-agnostic absolute path
        if '*' in p:
            files = sorted(glob.glob(p, recursive=True))  # glob
        elif os.path.isdir(p):
            files = sorted(glob.glob(os.path.join(p, '*.*')))  # dir
        elif os.path.isfile(p):
            if p.endswith('.txt'):
                with open(p, 'r') as f:
                    files = f.read().splitlines()
            else:
                files = [p]  # files
        else:
            raise Exception(f'ERROR: {p} does not exist')

        images = [x for x in files if x.split('.')[-1].lower() in img_formats]
        videos = [x for x in files if x.split('.')[-1].lower() in vid_formats]
        ni, nv = len(images), len(videos)

        self.img_size = img_size
        self.stride = stride
        self.files = images + videos
        self.nf = ni + nv  # number of files
        self.video_flag = [False] * ni + [True] * nv
        self.mode = 'image'
        if any(videos):
            self.new_video(videos[0])  # new video
        else:
            self.cap = None
        assert self.nf > 0, f'No images or videos found in {p}. ' \
                            f'Supported formats are:\nimages: {img_formats}\nvideos: {vid_formats}'

    def __iter__(self):
        self.count = 0
        return self

    def __next__(self):
        if self.count == self.nf:
            raise StopIteration
        path = self.files[self.count]

        if self.video_flag[self.count]:
            # Read video
            self.mode = 'video'
            ret_val, img0 = self.cap.read()
            if not ret_val:
                self.count += 1
                self.cap.release()
                if self.count == self.nf:  # last video
                    raise StopIteration
                else:
                    path = self.files[self.count]
                    self.new_video(path)
                    ret_val, img0 = self.cap.read()

            self.frame += 1
            print(f'video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: ', end='')

        else:
            # Read image
            self.count += 1
            img0 = cv2.imread(path)  # BGR
            assert img0 is not None, 'Image Not Found ' + path
            print(f'image {self.count}/{self.nf} {path}: ', end='')

        # Padded resize
        img = letterbox(img0, self.img_size, stride=self.stride)[0]

        # Convert
        img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
        img = np.ascontiguousarray(img)

        return path, img, img0, self.cap

    def new_video(self, path):
        self.frame = 0
        self.cap = cv2.VideoCapture(path)
        self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))

    def __len__(self):
        return self.nf  # number of files


class LoadWebcam:  # for inference
    def __init__(self, pipe='0', img_size=640, stride=32):
        self.img_size = img_size
        self.stride = stride

        if pipe.isnumeric():
            pipe = eval(pipe)  # local camera
        # pipe = 'rtsp://192.168.1.64/1'  # IP camera
        # pipe = 'rtsp://username:password@192.168.1.64/1'  # IP camera with login
        # pipe = 'http://wmccpinetop.axiscam.net/mjpg/video.mjpg'  # IP golf camera

        self.pipe = pipe
        self.cap = cv2.VideoCapture(pipe)  # video capture object
        self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3)  # set buffer size

    def __iter__(self):
        self.count = -1
        return self

    def __next__(self):
        self.count += 1
        if cv2.waitKey(1) == ord('q'):  # q to quit
            self.cap.release()
            cv2.destroyAllWindows()
            raise StopIteration

        # Read frame
        if self.pipe == 0:  # local camera
            ret_val, img0 = self.cap.read()
            img0 = cv2.flip(img0, 1)  # flip left-right
        else:  # IP camera
            n = 0
            while True:
                n += 1
                self.cap.grab()
                if n % 30 == 0:  # skip frames
                    ret_val, img0 = self.cap.retrieve()
                    if ret_val:
                        break

        # Print
        assert ret_val, f'Camera Error {self.pipe}'
        img_path = 'webcam.jpg'
        print(f'webcam {self.count}: ', end='')

        # Padded resize
        img = letterbox(img0, self.img_size, stride=self.stride)[0]

        # Convert
        img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
        img = np.ascontiguousarray(img)

        return img_path, img, img0, None

    def __len__(self):
        return 0


class LoadStreams:  # multiple IP or RTSP cameras
    def __init__(self, sources='streams.txt', img_size=640, stride=32):
        self.mode = 'stream'
        self.img_size = img_size
        self.stride = stride

        if os.path.isfile(sources):
            with open(sources, 'r') as f:
                sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())]
        else:
            sources = [sources]

        n = len(sources)
        self.imgs, self.fps, self.frames, self.threads = [None] * n, [0] * n, [0] * n, [None] * n
        self.sources = [clean_str(x) for x in sources]  # clean source names for later
        for i, s in enumerate(sources):  # index, source
            # Start thread to read frames from video stream
            print(f'{i + 1}/{n}: {s}... ', end='')
            if 'youtube.com/' in s or 'youtu.be/' in s:  # if source is YouTube video
                check_requirements(('pafy', 'youtube_dl'))
                import pafy
                s = pafy.new(s).getbest(preftype="mp4").url  # YouTube URL
            s = eval(s) if s.isnumeric() else s  # i.e. s = '0' local webcam
            cap = cv2.VideoCapture(s)
            assert cap.isOpened(), f'Failed to open {s}'
            w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
            h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
            self.fps[i] = max(cap.get(cv2.CAP_PROP_FPS) % 100, 0) or 30.0  # 30 FPS fallback
            self.frames[i] = max(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float('inf')  # infinite stream fallback

            _, self.imgs[i] = cap.read()  # guarantee first frame
            self.threads[i] = Thread(target=self.update, args=([i, cap]), daemon=True)
            print(f" success ({self.frames[i]} frames {w}x{h} at {self.fps[i]:.2f} FPS)")
            self.threads[i].start()
        print('')  # newline

        # check for common shapes
        s = np.stack([letterbox(x, self.img_size, stride=self.stride)[0].shape for x in self.imgs], 0)  # shapes
        self.rect = np.unique(s, axis=0).shape[0] == 1  # rect inference if all shapes equal
        if not self.rect:
            print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.')

    def update(self, i, cap):
        # Read stream `i` frames in daemon thread
        n, f = 0, self.frames[i]
        while cap.isOpened() and n < f:
            n += 1
            # _, self.imgs[index] = cap.read()
            cap.grab()
            if n % 4:  # read every 4th frame
                success, im = cap.retrieve()
                self.imgs[i] = im if success else self.imgs[i] * 0
            time.sleep(1 / self.fps[i])  # wait time

    def __iter__(self):
        self.count = -1
        return self

    def __next__(self):
        self.count += 1
        if not all(x.is_alive() for x in self.threads) or cv2.waitKey(1) == ord('q'):  # q to quit
            cv2.destroyAllWindows()
            raise StopIteration

        # Letterbox
        img0 = self.imgs.copy()
        img = [letterbox(x, self.img_size, auto=self.rect, stride=self.stride)[0] for x in img0]

        # Stack
        img = np.stack(img, 0)

        # Convert
        img = img[:, :, :, ::-1].transpose(0, 3, 1, 2)  # BGR to RGB, to bsx3x416x416
        img = np.ascontiguousarray(img)

        return self.sources, img, img0, None

    def __len__(self):
        return 0  # 1E12 frames = 32 streams at 30 FPS for 30 years


def img2label_paths(img_paths):
    # Define label paths as a function of image paths
    sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep  # /images/, /labels/ substrings
    return ['txt'.join(x.replace(sa, sb, 1).rsplit(x.split('.')[-1], 1)) for x in img_paths]


class LoadImagesAndLabels(Dataset):  # for training/testing
    def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
                 cache_images=False, single_cls=False, stride=32, pad=0.0, prefix=''):
        self.img_size = img_size
        self.augment = augment
        self.hyp = hyp
        self.image_weights = image_weights
        self.rect = False if image_weights else rect
        self.mosaic = self.augment and not self.rect  # load 4 images at a time into a mosaic (only during training)
        self.mosaic_border = [-img_size // 2, -img_size // 2]
        self.stride = stride
        self.path = path

        try:
            f = []  # image files
            for p in path if isinstance(path, list) else [path]:
                p = Path(p)  # os-agnostic
                if p.is_dir():  # dir
                    f += glob.glob(str(p / '**' / '*.*'), recursive=True)
                    # f = list(p.rglob('**/*.*'))  # pathlib
                elif p.is_file():  # file
                    with open(p, 'r') as t:
                        t = t.read().strip().splitlines()
                        parent = str(p.parent) + os.sep
                        f += [x.replace('./', parent) if x.startswith('./') else x for x in t]  # local to global path
                        # f += [p.parent / x.lstrip(os.sep) for x in t]  # local to global path (pathlib)
                else:
                    raise Exception(f'{prefix}{p} does not exist')
            self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in img_formats])
            # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in img_formats])  # pathlib
            assert self.img_files, f'{prefix}No images found'
        except Exception as e:
            raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {help_url}')

        # Check cache
        self.label_files = img2label_paths(self.img_files)  # labels
        cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache')  # cached labels
        if cache_path.is_file():
            cache, exists = torch.load(cache_path), True  # load
            if cache['hash'] != get_hash(self.label_files + self.img_files):  # changed
                cache, exists = self.cache_labels(cache_path, prefix), False  # re-cache
        else:
            cache, exists = self.cache_labels(cache_path, prefix), False  # cache

        # Display cache
        nf, nm, ne, nc, n = cache.pop('results')  # found, missing, empty, corrupted, total
        if exists:
            d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted"
            tqdm(None, desc=prefix + d, total=n, initial=n)  # display cache results
        assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {help_url}'

        # Read cache
        cache.pop('hash')  # remove hash
        cache.pop('version')  # remove version
        labels, shapes, self.segments = zip(*cache.values())
        self.labels = list(labels)
        self.shapes = np.array(shapes, dtype=np.float64)
        self.img_files = list(cache.keys())  # update
        self.label_files = img2label_paths(cache.keys())  # update
        if single_cls:
            for x in self.labels:
                x[:, 0] = 0

        n = len(shapes)  # number of images
        bi = np.floor(np.arange(n) / batch_size).astype(np.int64)  # batch index
        nb = bi[-1] + 1  # number of batches
        self.batch = bi  # batch index of image
        self.n = n
        self.indices = range(n)

        # Rectangular Training
        if self.rect:
            # Sort by aspect ratio
            s = self.shapes  # wh
            ar = s[:, 1] / s[:, 0]  # aspect ratio
            irect = ar.argsort()
            self.img_files = [self.img_files[i] for i in irect]
            self.label_files = [self.label_files[i] for i in irect]
            self.labels = [self.labels[i] for i in irect]
            self.shapes = s[irect]  # wh
            ar = ar[irect]

            # Set training image shapes
            shapes = [[1, 1]] * nb
            for i in range(nb):
                ari = ar[bi == i]
                mini, maxi = ari.min(), ari.max()
                if maxi < 1:
                    shapes[i] = [maxi, 1]
                elif mini > 1:
                    shapes[i] = [1, 1 / mini]

            self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int64) * stride

        # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
        self.imgs = [None] * n
        if cache_images:
            gb = 0  # Gigabytes of cached images
            self.img_hw0, self.img_hw = [None] * n, [None] * n
            results = ThreadPool(num_threads).imap(lambda x: load_image(*x), zip(repeat(self), range(n)))
            pbar = tqdm(enumerate(results), total=n)
            for i, x in pbar:
                self.imgs[i], self.img_hw0[i], self.img_hw[i] = x  # img, hw_original, hw_resized = load_image(self, i)
                gb += self.imgs[i].nbytes
                pbar.desc = f'{prefix}Caching images ({gb / 1E9:.1f}GB)'
            pbar.close()

    def cache_labels(self, path=Path('./labels.cache'), prefix=''):
        # Cache dataset labels, check images and read shapes
        x = {}  # dict
        nm, nf, ne, nc = 0, 0, 0, 0  # number missing, found, empty, corrupt
        desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels..."
        with Pool(num_threads) as pool:
            pbar = tqdm(pool.imap_unordered(verify_image_label, zip(self.img_files, self.label_files, repeat(prefix))),
                        desc=desc, total=len(self.img_files))
            for im_file, l, shape, segments, nm_f, nf_f, ne_f, nc_f in pbar:
                nm += nm_f
                nf += nf_f
                ne += ne_f
                nc += nc_f
                if im_file:
                    x[im_file] = [l, shape, segments]
                pbar.desc = f"{desc}{nf} found, {nm} missing, {ne} empty, {nc} corrupted"

        pbar.close()
        if nf == 0:
            logging.info(f'{prefix}WARNING: No labels found in {path}. See {help_url}')
        x['hash'] = get_hash(self.label_files + self.img_files)
        x['results'] = nf, nm, ne, nc, len(self.img_files)
        x['version'] = 0.2  # cache version
        try:
            torch.save(x, path)  # save cache for next time
            logging.info(f'{prefix}New cache created: {path}')
        except Exception as e:
            logging.info(f'{prefix}WARNING: Cache directory {path.parent} is not writeable: {e}')  # path not writeable
        return x

    def __len__(self):
        return len(self.img_files)

    # def __iter__(self):
    #     self.count = -1
    #     print('ran dataset iter')
    #     #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
    #     return self

    def __getitem__(self, index):
        ta = time.time()
        index = self.indices[index]  # linear, shuffled, or image_weights

        hyp = self.hyp
        mosaic = self.mosaic and random.random() <= hyp['mosaic']
        if mosaic:
            # Load mosaic
            img, msk, labels = load_mosaic(self, index)
            shapes = None

            # MixUp https://arxiv.org/pdf/1710.09412.pdf
            if random.random() < hyp['mixup']:
                img2, msk2, labels2 = load_mosaic(self, random.randint(0, self.n - 1))
                r = np.random.beta(32.0, 32.0)  # mixup ratio, alpha=beta=32.0
                img = (img * r + img2 * (1 - r)).astype(np.uint8)
                np.maximum(msk, msk2, out=msk)
                labels = np.concatenate((labels, labels2), 0)

        else:
            # Load image
            (img, msk), (h0, w0), (h, w) = load_image(self, index)
            # assert msk is None

            # Letterbox
            shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size  # final letterboxed shape
            img, msk, ratio, pad = letterbox(img, shape, msk=msk, auto=False, scaleup=self.augment)
            shapes = (h0, w0), ((h / h0, w / w0), pad)  # for COCO mAP rescaling

            labels = self.labels[index].copy()
            if labels.size:  # normalized xywh to pixel xyxy format
                labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])

        if self.augment:
            # Augment imagespace
            if not mosaic:
                img, msk, labels = random_perspective(img, msk, labels,
                                                 degrees=hyp['degrees'],
                                                 translate=hyp['translate'],
                                                 scale=hyp['scale'],
                                                 shear=hyp['shear'],
                                                 perspective=hyp['perspective'])

            # Augment colorspace
            augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])

            # Apply cutouts
            # if random.random() < 0.9:
            #     labels = cutout(img, labels)

        nL = len(labels)  # number of labels
        if nL:
            labels[:, 1:5] = xyxy2xywh(labels[:, 1:5])  # convert xyxy to xywh
            labels[:, [2, 4]] /= img.shape[0]  # normalized height 0-1
            labels[:, [1, 3]] /= img.shape[1]  # normalized width 0-1

        if self.augment:
            # flip up-down
            if random.random() < hyp['flipud']:
                img = np.flipud(img)
                msk = np.flipud(msk) if msk is not None else None
                if nL:
                    labels[:, 2] = 1 - labels[:, 2]

            # flip left-right
            if random.random() < hyp['fliplr']:
                img = np.fliplr(img)
                msk = np.fliplr(msk) if msk is not None else None
                if nL:
                    labels[:, 1] = 1 - labels[:, 1]

        labels_out = torch.zeros((nL, 6))
        if nL:
            labels_out[:, 1:] = torch.from_numpy(labels)

        # Convert
        img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
        img = np.ascontiguousarray(img)

        if msk is not None:
            # msk = cv2.resize(msk, (msk.shape[1]//8, msk.shape[0]//8), interpolation=cv2.INTER_AREA) Warning: small objects may be overwhelmed
            msk = block_reduce(msk, (8, 8, 1), np.max)  # MaxPool2D
            msk = np.ascontiguousarray(msk.transpose(2, 0, 1))  # chw
            mask, weight = np.split(msk, 2, axis=0)
        
        # # 放在这里会比放在train.py或者test.py中要快一点点，毕竟dataloader是异步操作
        # # 但是不适用于multi-scale训练，因为插值会破坏mask的绝对值
        # mask, weight = target2mask(labels_out, img.shape, 1)
 
        tb = time.time()
        # print(f'Data: {tb - ta:.3f}s')
        return torch.from_numpy(img), labels_out, torch.from_numpy(mask), torch.from_numpy(weight), self.img_files[index], shapes
        # return torch.from_numpy(img), labels_out, self.img_files[index], shapes

    @staticmethod
    def collate_fn(batch):
        img, label, mask, weight, path, shapes = zip(*batch)  # transposed
        # img, label, path, shapes = zip(*batch)  # transposed
        for i, l in enumerate(label):
            l[:, 0] = i  # add target image index for build_targets()
        return torch.stack(img), torch.cat(label), torch.stack(mask), torch.stack(weight), path, shapes
        # return torch.stack(img, 0), torch.cat(label, 0), path, shapes

    @staticmethod
    def collate_fn4(batch):
        raise NotImplementedError
        img, label, path, shapes = zip(*batch)  # transposed
        n = len(shapes) // 4
        img4, label4, path4, shapes4 = [], [], path[:n], shapes[:n]

        ho = torch.tensor([[0., 0, 0, 1, 0, 0]])
        wo = torch.tensor([[0., 0, 1, 0, 0, 0]])
        s = torch.tensor([[1, 1, .5, .5, .5, .5]])  # scale
        for i in range(n):  # zidane torch.zeros(16,3,720,1280)  # BCHW
            i *= 4
            if random.random() < 0.5:
                im = F.interpolate(img[i].unsqueeze(0).float(), scale_factor=2., mode='bilinear', align_corners=False)[
                    0].type(img[i].type())
                l = label[i]
            else:
                im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2)
                l = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s
            img4.append(im)
            label4.append(l)

        for i, l in enumerate(label4):
            l[:, 0] = i  # add target image index for build_targets()

        return torch.stack(img4, 0), torch.cat(label4, 0), path4, shapes4


# Ancillary functions --------------------------------------------------------------------------------------------------
def load_image(self, index):
    # loads 1 image from dataset, returns img, original hw, resized hw
    img = self.imgs[index]
    if img is None:  # not cached
        path = self.img_files[index]
        img = cv2.imread(path)  # BGR
        assert img is not None, 'Image Not Found ' + path
        h0, w0 = img.shape[:2]  # orig hw
        
        mask_path = path.replace('/images/', '/masks/').replace('.jpg', '.npy') #.replace('_masked.npy', '.npy')
        # mask = np.load(mask_path).astype(np.float32) if os.path.exists(mask_path) else None
        # shape(h,w,2)
        if os.path.exists(mask_path):
            mask = np.load(mask_path).astype(np.float32)  # shape(h,w,2)
        else:
            # mask = None
            mask = np.zeros((h0, w0, 2), dtype=np.float32)
            mask[..., 1] += 1.

        r = self.img_size / max(h0, w0)  # ratio
        if r != 1:  # if sizes are not equal
            interpolation = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR
            img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interpolation)
            if mask is not None:
                assert tuple(mask.shape[:2]) == (h0, w0)
                mask = cv2.resize(mask, (int(w0 * r), int(h0 * r)), interpolation=interpolation)
            
        return (img, mask), (h0, w0), img.shape[:2]  # img, hw_original, hw_resized
    else:
        raise NotImplementedError
        return self.imgs[index], self.img_hw0[index], self.img_hw[index]  # img, hw_original, hw_resized


_mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1)
_std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1)
def norm_imgs(imgs: torch.Tensor, model):
    device, dtype = imgs.device, imgs.dtype
    imgs /= 255.
    global _mean, _std
    if _mean.device != device or _mean.dtype != imgs.dtype:
        _mean = _mean.to(device).to(dtype)
        _std = _std.to(device).to(dtype)
    
    cfg_path = getattr(model, 'yaml_file', 'yolov5m.yaml')
    if 'yolo' in cfg_path:
        pass
    elif 'retina' in cfg_path or 'gpvit' in cfg_path:
        imgs = (imgs - _mean) / _std
    elif 'rtmdet' in cfg_path:
        imgs = (imgs - _mean) / _std
        imgs = imgs.flip(1)
    else:
        raise NotImplementedError(f'Please manually configure image normalization for {cfg_path}')
    
    return imgs.to(dtype)


def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
    r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1  # random gains
    hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
    dtype = img.dtype  # uint8

    x = np.arange(0, 256, dtype=r.dtype)
    lut_hue = ((x * r[0]) % 180).astype(dtype)
    lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
    lut_val = np.clip(x * r[2], 0, 255).astype(dtype)

    img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))
    cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img)  # no return needed


def hist_equalize(img, clahe=True, bgr=False):
    # Equalize histogram on BGR image 'img' with img.shape(n,m,3) and range 0-255
    yuv = cv2.cvtColor(img, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV)
    if clahe:
        c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
        yuv[:, :, 0] = c.apply(yuv[:, :, 0])
    else:
        yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0])  # equalize Y channel histogram
    return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB)  # convert YUV image to RGB


def load_mosaic(self, index):
    # loads images in a 4-mosaic

    labels4, segments4 = [], []
    s = self.img_size
    yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border]  # mosaic center x, y
    indices = [index] + random.choices(self.indices, k=3)  # 3 additional image indices
    for i, index in enumerate(indices):
        # Load image
        (img, msk), _, (h, w) = load_image(self, index)
        assert msk is not None

        # place img in img4
        if i == 0:  # top left
            img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
            msk4 = np.full((s * 2, s * 2, msk.shape[2]), 0.0, dtype=msk.dtype)  # base mask with 4 tiles
            msk4[..., 1] = 1.0  # base weight with 4 tiles
            x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc  # xmin, ymin, xmax, ymax (large image)
            x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h  # xmin, ymin, xmax, ymax (small image)
        elif i == 1:  # top right
            x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
            x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
        elif i == 2:  # bottom left
            x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
            x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
        elif i == 3:  # bottom right
            x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
            x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)

        img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b]  # img4[ymin:ymax, xmin:xmax]
        msk4[y1a:y2a, x1a:x2a] = msk[y1b:y2b, x1b:x2b]  # msk4[ymin:ymax, xmin:xmax]
        padw = x1a - x1b
        padh = y1a - y1b

        # Labels
        labels, segments = self.labels[index].copy(), self.segments[index].copy()
        if labels.size:
            labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh)  # normalized xywh to pixel xyxy format
            segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
        labels4.append(labels)
        segments4.extend(segments)

    # Concat/clip labels
    labels4 = np.concatenate(labels4, 0)
    for x in (labels4[:, 1:], *segments4):
        np.clip(x, 0, 2 * s, out=x)  # clip when using random_perspective()
    # img4, labels4 = replicate(img4, labels4)  # replicate

    # Augment
    img4, msk4, labels4 = random_perspective(img4, msk4, labels4, segments4,
                                             degrees=self.hyp['degrees'],
                                             translate=self.hyp['translate'],
                                             scale=self.hyp['scale'],
                                             shear=self.hyp['shear'],
                                             perspective=self.hyp['perspective'],
                                             border=self.mosaic_border)  # border to remove

    return img4, msk4, labels4


def load_mosaic9(self, index):
    # loads images in a 9-mosaic

    labels9, segments9 = [], []
    s = self.img_size
    indices = [index] + random.choices(self.indices, k=8)  # 8 additional image indices
    for i, index in enumerate(indices):
        # Load image
        img, _, (h, w) = load_image(self, index)

        # place img in img9
        if i == 0:  # center
            img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
            h0, w0 = h, w
            c = s, s, s + w, s + h  # xmin, ymin, xmax, ymax (base) coordinates
        elif i == 1:  # top
            c = s, s - h, s + w, s
        elif i == 2:  # top right
            c = s + wp, s - h, s + wp + w, s
        elif i == 3:  # right
            c = s + w0, s, s + w0 + w, s + h
        elif i == 4:  # bottom right
            c = s + w0, s + hp, s + w0 + w, s + hp + h
        elif i == 5:  # bottom
            c = s + w0 - w, s + h0, s + w0, s + h0 + h
        elif i == 6:  # bottom left
            c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
        elif i == 7:  # left
            c = s - w, s + h0 - h, s, s + h0
        elif i == 8:  # top left
            c = s - w, s + h0 - hp - h, s, s + h0 - hp

        padx, pady = c[:2]
        x1, y1, x2, y2 = [max(x, 0) for x in c]  # allocate coords

        # Labels
        labels, segments = self.labels[index].copy(), self.segments[index].copy()
        if labels.size:
            labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady)  # normalized xywh to pixel xyxy format
            segments = [xyn2xy(x, w, h, padx, pady) for x in segments]
        labels9.append(labels)
        segments9.extend(segments)

        # Image
        img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:]  # img9[ymin:ymax, xmin:xmax]
        hp, wp = h, w  # height, width previous

    # Offset
    yc, xc = [int(random.uniform(0, s)) for _ in self.mosaic_border]  # mosaic center x, y
    img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s]

    # Concat/clip labels
    labels9 = np.concatenate(labels9, 0)
    labels9[:, [1, 3]] -= xc
    labels9[:, [2, 4]] -= yc
    c = np.array([xc, yc])  # centers
    segments9 = [x - c for x in segments9]

    for x in (labels9[:, 1:], *segments9):
        np.clip(x, 0, 2 * s, out=x)  # clip when using random_perspective()
    # img9, labels9 = replicate(img9, labels9)  # replicate

    # Augment
    img9, labels9 = random_perspective(img9, labels9, segments9,
                                       degrees=self.hyp['degrees'],
                                       translate=self.hyp['translate'],
                                       scale=self.hyp['scale'],
                                       shear=self.hyp['shear'],
                                       perspective=self.hyp['perspective'],
                                       border=self.mosaic_border)  # border to remove

    return img9, labels9


def replicate(img, labels):
    # Replicate labels
    h, w = img.shape[:2]
    boxes = labels[:, 1:].astype(int)
    x1, y1, x2, y2 = boxes.T
    s = ((x2 - x1) + (y2 - y1)) / 2  # side length (pixels)
    for i in s.argsort()[:round(s.size * 0.5)]:  # smallest indices
        x1b, y1b, x2b, y2b = boxes[i]
        bh, bw = y2b - y1b, x2b - x1b
        yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw))  # offset x, y
        x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
        img[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b]  # img4[ymin:ymax, xmin:xmax]
        labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)

    return img, labels


def letterbox(img, new_shape=(640, 640), msk=None, color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
    # Resize and pad image while meeting stride-multiple constraints
    shape = img.shape[:2]  # current shape [height, width]
    if isinstance(new_shape, int):
        new_shape = (new_shape, new_shape)

    # Scale ratio (new / old)
    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
    if not scaleup:  # only scale down, do not scale up (for better test mAP)
        r = min(r, 1.0)

    # Compute padding
    ratio = r, r  # width, height ratios
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
    dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding
    if auto:  # minimum rectangle
        dw, dh = np.mod(dw, stride), np.mod(dh, stride)  # wh padding
    elif scaleFill:  # stretch
        dw, dh = 0.0, 0.0
        new_unpad = (new_shape[1], new_shape[0])
        ratio = new_shape[1] / shape[1], new_shape[0] / shape[0]  # width, height ratios

    dw /= 2  # divide padding into 2 sides
    dh /= 2

    if shape[::-1] != new_unpad:  # resize
        img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
        msk = cv2.resize(msk, new_unpad, interpolation=cv2.INTER_LINEAR) if msk is not None else None
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
    img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
    if msk is not None:
        msk = cv2.copyMakeBorder(msk, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(0., 1.))  # add border
        return img, msk, ratio, (dw, dh)
    else:
        return img, ratio, (dw, dh)


def random_perspective(img, msk=None, targets=(), segments=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0,
                       border=(0, 0)):
    # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
    # targets = [cls, xyxy]

    height = img.shape[0] + border[0] * 2  # shape(h,w,c)
    width = img.shape[1] + border[1] * 2

    # Center
    C = np.eye(3)
    C[0, 2] = -img.shape[1] / 2  # x translation (pixels)
    C[1, 2] = -img.shape[0] / 2  # y translation (pixels)

    # Perspective
    P = np.eye(3)
    P[2, 0] = random.uniform(-perspective, perspective)  # x perspective (about y)
    P[2, 1] = random.uniform(-perspective, perspective)  # y perspective (about x)

    # Rotation and Scale
    R = np.eye(3)
    a = random.uniform(-degrees, degrees)
    # a += random.choice([-180, -90, 0, 90])  # add 90deg rotations to small rotations
    s = random.uniform(1 - scale, 1 + scale)
    # s = 2 ** random.uniform(-scale, scale)
    R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)

    # Shear
    S = np.eye(3)
    S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180)  # x shear (deg)
    S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180)  # y shear (deg)

    # Translation
    T = np.eye(3)
    T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width  # x translation (pixels)
    T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height  # y translation (pixels)

    # Combined rotation matrix
    M = T @ S @ R @ P @ C  # order of operations (right to left) is IMPORTANT
    if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any():  # image changed
        if perspective:
            img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114))
            if msk is not None:
                msk = cv2.warpPerspective(msk, M, dsize=(width, height), borderValue=(0., 1.))
        else:  # affine
            img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
            if msk is not None:
                msk = cv2.warpAffine(msk, M[:2], dsize=(width, height), borderValue=(0., 1.))

    # Visualize
    # import matplotlib.pyplot as plt
    # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
    # ax[0].imshow(img[:, :, ::-1])  # base
    # ax[1].imshow(img2[:, :, ::-1])  # warped

    # Transform label coordinates
    n = len(targets)
    if n:
        use_segments = any(x.any() for x in segments)
        new = np.zeros((n, 4))
        if use_segments:  # warp segments
            segments = resample_segments(segments)  # upsample
            for i, segment in enumerate(segments):
                xy = np.ones((len(segment), 3))
                xy[:, :2] = segment
                xy = xy @ M.T  # transform
                xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]  # perspective rescale or affine

                # clip
                new[i] = segment2box(xy, width, height)

        else:  # warp boxes
            xy = np.ones((n * 4, 3))
            xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2)  # x1y1, x2y2, x1y2, x2y1
            xy = xy @ M.T  # transform
            xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8)  # perspective rescale or affine

            # create new boxes
            x = xy[:, [0, 2, 4, 6]]
            y = xy[:, [1, 3, 5, 7]]
            new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T

            # clip
            new[:, [0, 2]] = new[:, [0, 2]].clip(0, width)
            new[:, [1, 3]] = new[:, [1, 3]].clip(0, height)

        # filter candidates
        i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10)
        targets = targets[i]
        targets[:, 1:5] = new[i]

    if msk is not None:
        return img, msk, targets
    else:
        return img, targets


def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1, eps=1e-16):  # box1(4,n), box2(4,n)
    # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
    w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
    w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
    ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps))  # aspect ratio
    return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr)  # candidates


def cutout(image, labels):
    raise NotImplementedError
    # Applies image cutout augmentation https://arxiv.org/abs/1708.04552
    h, w = image.shape[:2]

    def bbox_ioa(box1, box2):
        # Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2
        box2 = box2.transpose()

        # Get the coordinates of bounding boxes
        b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
        b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]

        # Intersection area
        inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
                     (np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)

        # box2 area
        box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16

        # Intersection over box2 area
        return inter_area / box2_area

    # create random masks
    scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16  # image size fraction
    for s in scales:
        mask_h = random.randint(1, int(h * s))
        mask_w = random.randint(1, int(w * s))

        # box
        xmin = max(0, random.randint(0, w) - mask_w // 2)
        ymin = max(0, random.randint(0, h) - mask_h // 2)
        xmax = min(w, xmin + mask_w)
        ymax = min(h, ymin + mask_h)

        # apply random color mask
        image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]

        # return unobscured labels
        if len(labels) and s > 0.03:
            box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
            ioa = bbox_ioa(box, labels[:, 1:5])  # intersection over area
            labels = labels[ioa < 0.60]  # remove >60% obscured labels

    return labels


def create_folder(path='./new'):
    # Create folder
    if os.path.exists(path):
        shutil.rmtree(path)  # delete output folder
    os.makedirs(path)  # make new output folder


def flatten_recursive(path='../coco128'):
    # Flatten a recursive directory by bringing all files to top level
    new_path = Path(path + '_flat')
    create_folder(new_path)
    for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)):
        shutil.copyfile(file, new_path / Path(file).name)


def extract_boxes(path='../coco128/'):  # from utils.datasets import *; extract_boxes('../coco128')
    # Convert detection dataset into classification dataset, with one directory per class

    path = Path(path)  # images dir
    shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None  # remove existing
    files = list(path.rglob('*.*'))
    n = len(files)  # number of files
    for im_file in tqdm(files, total=n):
        if im_file.suffix[1:] in img_formats:
            # image
            im = cv2.imread(str(im_file))[..., ::-1]  # BGR to RGB
            h, w = im.shape[:2]

            # labels
            lb_file = Path(img2label_paths([str(im_file)])[0])
            if Path(lb_file).exists():
                with open(lb_file, 'r') as f:
                    lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32)  # labels

                for j, x in enumerate(lb):
                    c = int(x[0])  # class
                    f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg'  # new filename
                    if not f.parent.is_dir():
                        f.parent.mkdir(parents=True)

                    b = x[1:] * [w, h, w, h]  # box
                    # b[2:] = b[2:].max()  # rectangle to square
                    b[2:] = b[2:] * 1.2 + 3  # pad
                    b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int64)

                    b[[0, 2]] = np.clip(b[[0, 2]], 0, w)  # clip boxes outside of image
                    b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
                    assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'


def autosplit(path='../coco128', weights=(0.9, 0.1, 0.0), annotated_only=False):
    """ Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
    Usage: from utils.datasets import *; autosplit('../coco128')
    Arguments
        path:           Path to images directory
        weights:        Train, val, test weights (list)
        annotated_only: Only use images with an annotated txt file
    """
    path = Path(path)  # images dir
    files = sum([list(path.rglob(f"*.{img_ext}")) for img_ext in img_formats], [])  # image files only
    n = len(files)  # number of files
    indices = random.choices([0, 1, 2], weights=weights, k=n)  # assign each image to a split

    txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt']  # 3 txt files
    [(path / x).unlink() for x in txt if (path / x).exists()]  # remove existing

    print(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only)
    for i, img in tqdm(zip(indices, files), total=n):
        if not annotated_only or Path(img2label_paths([str(img)])[0]).exists():  # check label
            with open(path / txt[i], 'a') as f:
                f.write(str(img) + '\n')  # add image to txt file


def verify_image_label(params):
    # Verify one image-label pair
    im_file, lb_file, prefix = params
    nm, nf, ne, nc = 0, 0, 0, 0  # number missing, found, empty, corrupt
    try:
        # verify images
        im = Image.open(im_file)
        im.verify()  # PIL verify
        shape = exif_size(im)  # image size
        segments = []  # instance segments
        assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels'
        assert im.format.lower() in img_formats, f'invalid image format {im.format}'

        # verify labels
        if os.path.isfile(lb_file):
            nf = 1  # label found
            with open(lb_file, 'r') as f:
                l = [x.split() for x in f.read().strip().splitlines() if len(x)]
                if any([len(x) > 8 for x in l]):  # is segment
                    classes = np.array([x[0] for x in l], dtype=np.float32)
                    segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in l]  # (cls, xy1...)
                    l = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1)  # (cls, xywh)
                l = np.array(l, dtype=np.float32)
            if len(l):
                assert l.shape[1] == 5, 'labels require 5 columns each'
                assert (l >= 0).all(), 'negative labels'
                assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels'
                assert np.unique(l, axis=0).shape[0] == l.shape[0], 'duplicate labels'
            else:
                ne = 1  # label empty
                l = np.zeros((0, 5), dtype=np.float32)
        else:
            nm = 1  # label missing
            l = np.zeros((0, 5), dtype=np.float32)
        return im_file, l, shape, segments, nm, nf, ne, nc
    except Exception as e:
        nc = 1
        logging.info(f'{prefix}WARNING: Ignoring corrupted image and/or label {im_file}: {e}')
        return [None] * 4 + [nm, nf, ne, nc]


def dataset_stats(path='data/coco128.yaml', verbose=False):
    """ Return dataset statistics dictionary with images and instances counts per split per class
    Usage: from utils.datasets import *; dataset_stats('data/coco128.yaml')
    Arguments
        path:           Path to data.yaml
        verbose:        Print stats dictionary
    """
    path = check_file(Path(path))
    with open(path) as f:
        data = yaml.safe_load(f)  # data dict
    check_dataset(data)  # download dataset if missing

    nc = data['nc']  # number of classes
    stats = {'nc': nc, 'names': data['names']}  # statistics dictionary
    for split in 'train', 'val', 'test':
        if split not in data:
            stats[split] = None  # i.e. no test set
            continue
        x = []
        dataset = LoadImagesAndLabels(data[split], augment=False, rect=True)  # load dataset
        for label in tqdm(dataset.labels, total=dataset.n, desc='Statistics'):
            x.append(np.bincount(label[:, 0].astype(int), minlength=nc))
        x = np.array(x)  # shape(128x80)
        stats[split] = {'instances': {'total': int(x.sum()), 'per_class': x.sum(0).tolist()},
                        'images': {'total': dataset.n, 'unlabelled': int(np.all(x == 0, 1).sum()),
                                   'per_class': (x > 0).sum(0).tolist()}}
    if verbose:
        print(yaml.dump([stats], sort_keys=False, default_flow_style=False))
    return stats
