utils/metrics.py (206 lines of code) (raw):
# Model validation metrics
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn.functional as F
from . import general
def fitness(x):
# Model fitness as a weighted combination of metrics
w = [0.0, 0.0, 0.9, 0.1] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
return (x[:, :4] * w).sum(1)
def mask_pr(true, posi, targets, precision :list, recall: list, threshold=0.5):
assert true.shape == posi.shape
bs, _, ny, nx = true.shape
device = true.device
posi = posi.sigmoid()
# threshold = round(true[true > 0.05].min().item(), 1)
true = true >= threshold
posi = posi >= threshold
bboxes = general.xywh2xyxy(targets[:, 2:]).clip(0, 1)
# gain = torch.tensor([[nx, ny, nx, ny]], device=device)
# bboxes = torch.cat((targets[:, :1], bboxes * gain), dim=1).long()
gain = torch.tensor([[nx, ny]], device=device)
bboxes = torch.cat((targets[:, :1], (bboxes[:, :2] * gain).floor(), (bboxes[:, 2:] * gain).ceil()), dim=1).long()
for bi, x1, y1, x2, y2 in bboxes:
ins_true = true[bi, 0, y1:y2, x1:x2]
ins_posi = posi[bi, 0, y1:y2, x1:x2]
assert ins_true.sum() > 0
# precision.append(((ins_true & ins_posi).sum() + 1e-9) / (ins_posi.sum() + 1e-9))
recall.append((ins_true & ins_posi).sum() / ins_true.sum())
precision.append(((true & posi).sum() + 1e-9) / (posi.sum() + 1e-9))
# recall.append((true & posi).sum() / (true.sum() + 1e-9))
def cluster_recall(clusters, targets, imgsz=(1024,576), mode='bbox', stride=8):
assert mode in ['point', 'bbox'], '%s' % mode
tp, cluster_num = 0, 0
patch_w, patch_h = 0, 0
bs = len(clusters)
for bi, cluster in enumerate(clusters):
t = targets[targets[:, 0] == bi][:, -4:] / stride # [xc, yc, w, h]
cluster_num += len(cluster)
if len(cluster) == 0 or len(t) == 0:
continue
patch_w, patch_h = cluster[0, [-2, -1]] - cluster[0, [-4, -3]]
# assert len(cluster) <= stride ** 2
# cluster: shape(m,4) = [x1, y1, x2, y2]; t: shape(n,2) = [xc, yc, w, h]
if mode == 'point':
x1, y1, x2, y2 = cluster.T
xc, yc, w, h = t.T
tp += ((x1[None, :] <= xc[:, None]) & (xc[:, None] < x2[None, :]) &
(y1[None, :] <= yc[:, None]) & (yc[:, None] < y2[None, :])).any(dim=1).sum()
else:
# xc, yc, w, h = t.T
# t = t[w * h > 12. * 12.] # 4 * 8 = 32, 12 * 8 = 96
# tp += len(t)
ios = general.box_ios(general.xywh2xyxy(t), cluster)
tp += (ios >= 0.5).any(dim=1).sum()
# tp += ((ios < 0.5).all(dim=1) & (ios >= 0.01).any(dim=1)).sum() # fn
# total_patch_num = bs * ratio ** 2
# total_patch_num = bs * math.ceil(imgsz[0] / patch_w / stride) * math.ceil(imgsz[1] / patch_h / stride)
# total_patch_num = (imgsz[0] / patch_w / stride) * (imgsz[1] / patch_h / stride)
cluster_num = (cluster_num * (patch_w * stride) * (patch_h * stride)) / (bs * imgsz[0] * imgsz[1])
total_patch_num = 1.
return torch.tensor([tp, cluster_num, total_patch_num], device=targets.device)
def sparse_recall(heatmap, targets, recall :list, threshold=0.3):
heatmap = heatmap.sigmoid()
indices_pyrimid = []
# for s in [1, 2, 4]:
# heatmap_i = heatmap if s == 1 else F.avg_pool2d(heatmap, s, stride=s, padding=0)
# maxima = F.max_pool2d(heatmap_i, 3, stride=1, padding=1) == heatmap_i
# response = heatmap_i >= threshold / s
# indices = (maxima & response).float()
# indices = F.max_pool2d(indices, 3, stride=1, padding=1) # expansion
# indices_pyrimid.append(indices)
maxima = F.max_pool2d(heatmap, 3, stride=1, padding=1) == heatmap
response = heatmap >= threshold
indices = (maxima & response).float()
for s in [1, 2, 4]:
indices_i = indices if s == 1 else F.max_pool2d(indices, s, stride=s, padding=0)
indices_i = F.max_pool2d(indices_i, 3, stride=1, padding=1) # expansion
indices_pyrimid.append(indices_i)
_, _, ny, nx = heatmap.shape
gain = torch.tensor([[nx, ny, nx, ny]], device=heatmap.device)
for i, (xc, yc, w, h) in enumerate((gain * targets[:, 2:]).long()):
bi = targets[i, 0].long()
# recall.append(indices[bi, 0, yc, xc])
# li = torch.minimum(w, h).clamp(1).log2().ceil().long().clamp(0, 2).item()
# res = sum([indices_pyrimid[j][bi, 0, yc//(2**j), xc//(2**j)] for j in range(li + 1)]) > 0
res = sum([indices_pyrimid[j][bi, 0, yc//(2**j), xc//(2**j)] for j in range(3)]) > 0
recall.append(res.float())
def hm_verbose(recall, attr):
assert len(recall) == len(attr)
c, w, h = attr.T
s = w * h
res_cls = []
for ci in range(c.max().long().item()+1):
ind = c == ci
res_cls.append(recall[ind].mean().item())
s0 = 32 / 1920 * 32 / 1080
size_sep = [0, s0 / 4, s0, s0 * 4, 1.]
res_size = []
for i in range(len(size_sep)-1):
ind = (size_sep[i] < s) & (s <= size_sep[i+1])
res_size.append(recall[ind].mean().item())
return res_cls, res_size
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=()):
""" Compute the average precision, given the recall and precision curves.
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
# Arguments
tp: True positives (nparray, nx1 or nx10).
conf: Objectness value from 0-1 (nparray).
pred_cls: Predicted object classes (nparray).
target_cls: True object classes (nparray).
plot: Plot precision-recall curve at mAP@0.5
save_dir: Plot save directory
# Returns
The average precision as computed in py-faster-rcnn.
"""
# Sort by objectness
i = np.argsort(-conf)
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
# Find unique classes
unique_classes = np.unique(target_cls)
nc = unique_classes.shape[0] # number of classes, number of detections
# Create Precision-Recall curve and compute AP for each class
px, py = np.linspace(0, 1, 1000), [] # for plotting
ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
for ci, c in enumerate(unique_classes):
i = pred_cls == c
n_l = (target_cls == c).sum() # number of labels
n_p = i.sum() # number of predictions
if n_p == 0 or n_l == 0:
continue
else:
# Accumulate FPs and TPs
fpc = (1 - tp[i]).cumsum(0)
tpc = tp[i].cumsum(0)
# Recall
recall = tpc / (n_l + 1e-16) # recall curve
r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases
# Precision
precision = tpc / (tpc + fpc) # precision curve
p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score
# AP from recall-precision curve
for j in range(tp.shape[1]):
ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
if plot and j == 0:
py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
# Compute F1 (harmonic mean of precision and recall)
f1 = 2 * p * r / (p + r + 1e-16)
if plot:
plot_pr_curve(px, py, ap, Path(save_dir) / 'PR_curve.png', names)
plot_mc_curve(px, f1, Path(save_dir) / 'F1_curve.png', names, ylabel='F1')
plot_mc_curve(px, p, Path(save_dir) / 'P_curve.png', names, ylabel='Precision')
plot_mc_curve(px, r, Path(save_dir) / 'R_curve.png', names, ylabel='Recall')
i = f1.mean(0).argmax() # max F1 index
return p[:, i], r[:, i], ap, f1[:, i], unique_classes.astype('int32')
def compute_ap(recall, precision):
""" Compute the average precision, given the recall and precision curves
# Arguments
recall: The recall curve (list)
precision: The precision curve (list)
# Returns
Average precision, precision curve, recall curve
"""
# Append sentinel values to beginning and end
mrec = np.concatenate(([0.], recall, [recall[-1] + 0.01]))
mpre = np.concatenate(([1.], precision, [0.]))
# Compute the precision envelope
mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
# Integrate area under curve
method = 'interp' # methods: 'continuous', 'interp'
if method == 'interp':
x = np.linspace(0, 1, 101) # 101-point interp (COCO)
ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
else: # 'continuous'
i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
return ap, mpre, mrec
class ConfusionMatrix:
# Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
def __init__(self, nc, conf=0.25, iou_thres=0.45):
self.matrix = np.zeros((nc + 1, nc + 1))
self.nc = nc # number of classes
self.conf = conf
self.iou_thres = iou_thres
def process_batch(self, detections, labels):
"""
Return intersection-over-union (Jaccard index) of boxes.
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
Arguments:
detections (Array[N, 6]), x1, y1, x2, y2, conf, class
labels (Array[M, 5]), class, x1, y1, x2, y2
Returns:
None, updates confusion matrix accordingly
"""
detections = detections[detections[:, 4] > self.conf]
gt_classes = labels[:, 0].int()
detection_classes = detections[:, 5].int()
iou = general.box_iou(labels[:, 1:], detections[:, :4])
x = torch.where(iou > self.iou_thres)
if x[0].shape[0]:
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
if x[0].shape[0] > 1:
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
else:
matches = np.zeros((0, 3))
n = matches.shape[0] > 0
m0, m1, _ = matches.transpose().astype(np.int16)
for i, gc in enumerate(gt_classes):
j = m0 == i
if n and sum(j) == 1:
self.matrix[detection_classes[m1[j]], gc] += 1 # correct
else:
self.matrix[self.nc, gc] += 1 # background FP
if n:
for i, dc in enumerate(detection_classes):
if not any(m1 == i):
self.matrix[dc, self.nc] += 1 # background FN
def matrix(self):
return self.matrix
def plot(self, save_dir='', names=()):
try:
import seaborn as sn
array = self.matrix / (self.matrix.sum(0).reshape(1, self.nc + 1) + 1E-6) # normalize
array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
fig = plt.figure(figsize=(12, 9), tight_layout=True)
sn.set(font_scale=1.0 if self.nc < 50 else 0.8) # for label size
labels = (0 < len(names) < 99) and len(names) == self.nc # apply names to ticklabels
sn.heatmap(array, annot=self.nc < 30, annot_kws={"size": 8}, cmap='Blues', fmt='.2f', square=True,
xticklabels=names + ['background FP'] if labels else "auto",
yticklabels=names + ['background FN'] if labels else "auto").set_facecolor((1, 1, 1))
fig.axes[0].set_xlabel('True')
fig.axes[0].set_ylabel('Predicted')
fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
except Exception as e:
pass
def print(self):
for i in range(self.nc + 1):
print(' '.join(map(str, self.matrix[i])))
# Plots ----------------------------------------------------------------------------------------------------------------
def plot_pr_curve(px, py, ap, save_dir='pr_curve.png', names=()):
# Precision-recall curve
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
py = np.stack(py, axis=1)
if 0 < len(names) < 21: # display per-class legend if < 21 classes
for i, y in enumerate(py.T):
ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision)
else:
ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision)
ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
ax.set_xlabel('Recall')
ax.set_ylabel('Precision')
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
fig.savefig(Path(save_dir), dpi=250)
def plot_mc_curve(px, py, save_dir='mc_curve.png', names=(), xlabel='Confidence', ylabel='Metric'):
# Metric-confidence curve
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
if 0 < len(names) < 21: # display per-class legend if < 21 classes
for i, y in enumerate(py):
ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric)
else:
ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric)
y = py.mean(0)
ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
fig.savefig(Path(save_dir), dpi=250)