def _collate_fn()

in graphlearn_torch/python/loader/node_loader.py [0:0]


  def _collate_fn(self, sampler_out: Union[SamplerOutput, HeteroSamplerOutput]):
    r"""format sampler output to Data/HeteroData"""
    if isinstance(sampler_out, SamplerOutput):
      x = self.data.node_features[sampler_out.node]
      y = self.input_t_label[sampler_out.node] \
        if self.input_t_label is not None else None
      if self.data.edge_features is not None and sampler_out.edge is not None:
        edge_attr = self.data.edge_features[sampler_out.edge]
      else:
        edge_attr = None
      res_data = to_data(sampler_out, batch_labels=y,
                         node_feats=x, edge_feats=edge_attr)
    else: # hetero
      x_dict = {}
      x_dict = {ntype : self.data.get_node_feature(ntype)[ids] for ntype, ids in sampler_out.node.items()}
      input_t_ids = sampler_out.node[self._input_type]
      y_dict = {self._input_type: self.input_t_label[input_t_ids]} \
        if self.input_t_label is not None else None
      edge_attr_dict = {}
      if sampler_out.edge is not None:
        for etype, eids in sampler_out.edge.items():
          efeat = self.data.get_edge_feature(etype)
          if efeat is not None:
            edge_attr_dict[etype] = efeat[eids]
      res_data = to_hetero_data(sampler_out, batch_label_dict=y_dict,
                                node_feat_dict=x_dict,
                                edge_feat_dict=edge_attr_dict,
                                edge_dir=self.data.edge_dir)
    return res_data