graphlearn_torch/python/utils/device.py (26 lines of code) (raw):

# Copyright 2022 Alibaba Group Holding Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import threading from typing import Optional import torch def get_available_device(device: Optional[torch.device] = None) -> torch.device: r""" Get an available device. If the input device is not ``None``, it will be returened directly. Otherwise an available device will be choosed ( current cuda device will be preferred if available). """ if device is not None: return torch.device(device) if torch.cuda.is_available(): return torch.device('cuda', torch.cuda.current_device()) return torch.device('cpu') _cuda_device_assign_lock = threading.RLock() _cuda_device_rank = 0 def assign_device(): r""" Assign an device to use, the cuda device will be preferred if available. """ if torch.cuda.is_available(): global _cuda_device_rank with _cuda_device_assign_lock: device_rank = _cuda_device_rank _cuda_device_rank = (_cuda_device_rank + 1) % torch.cuda.device_count() return torch.device('cuda', device_rank) return torch.device('cpu') def ensure_device(device: torch.device): r""" Make sure that current cuda kernel corresponds to the assigned device. """ if (device.type == 'cuda' and device.index != torch.cuda.current_device()): torch.cuda.set_device(device)