utils/common.py [41:60]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        mean = [0.485, 0.456, 0.406]
        std = [0.229, 0.224, 0.225]
        train_transform = transforms.Compose([
            transforms.RandomResizedCrop(224, scale=(0.2, 1.0)),
            transforms.RandomHorizontalFlip(),
            transforms.RandomApply([
                transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)
            ], p=0.8),
            transforms.RandomGrayscale(p=0.2),
            transforms.ToTensor(),
            transforms.Normalize(mean, std)
        ])
        test_transform = transforms.Compose([
            transforms.Resize(256),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            transforms.Normalize(mean, std)
        ])
    if args.dataset == 'cifar10':
        num_classes = 10
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



utils/common.py [164:183]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        mean = [0.485, 0.456, 0.406]
        std = [0.229, 0.224, 0.225]
        train_transform = transforms.Compose([
            transforms.RandomResizedCrop(224, scale=(0.2, 1.0)),
            transforms.RandomHorizontalFlip(),
            transforms.RandomApply([
                transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)
            ], p=0.8),
            transforms.RandomGrayscale(p=0.2),
            transforms.ToTensor(),
            transforms.Normalize(mean, std)
        ])
        test_transform = transforms.Compose([
            transforms.Resize(256),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            transforms.Normalize(mean, std)
        ])
    if args.dataset == 'cifar10':
        num_classes = 10
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



