in utils/ltr_metrics.py [0:0]
def shot_ood2(cls_count, train_class_count):
many_shot_thr, low_shot_thr = divide_lt(train_class_count)
many_shot = []
median_shot = []
low_shot = []
for i, fp_num in enumerate(cls_count):
if train_class_count[i] > many_shot_thr:
many_shot.append(fp_num)
elif train_class_count[i] < low_shot_thr:
low_shot.append(fp_num)
else:
median_shot.append(fp_num)
return np.nanmean(many_shot), np.nanmean(median_shot), np.nanmean(low_shot)