def shot_ood2()

in utils/ltr_metrics.py [0:0]


def shot_ood2(cls_count, train_class_count):
    many_shot_thr, low_shot_thr = divide_lt(train_class_count)

    many_shot = []
    median_shot = []
    low_shot = []
    for i, fp_num in enumerate(cls_count):
        if train_class_count[i] > many_shot_thr:
            many_shot.append(fp_num)
        elif train_class_count[i] < low_shot_thr:
            low_shot.append(fp_num)
        else:
            median_shot.append(fp_num)    

    return np.nanmean(many_shot), np.nanmean(median_shot), np.nanmean(low_shot)