def class_aware_sample_generator()

in datasets/ClassAwareSampler.py [0:0]


def class_aware_sample_generator (cls_iter, data_iter_list, n, num_samples_cls=1):

    i = 0
    j = 0
    while i < n:
        
#         yield next(data_iter_list[next(cls_iter)])
        
        if j >= num_samples_cls:
            j = 0
    
        if j == 0:
            temp_tuple = next(zip(*[data_iter_list[next(cls_iter)]]*num_samples_cls))
            yield temp_tuple[j]
        else:
            yield temp_tuple[j]
        
        i += 1
        j += 1