in datasets/ClassAwareSampler.py [0:0]
def class_aware_sample_generator (cls_iter, data_iter_list, n, num_samples_cls=1):
i = 0
j = 0
while i < n:
# yield next(data_iter_list[next(cls_iter)])
if j >= num_samples_cls:
j = 0
if j == 0:
temp_tuple = next(zip(*[data_iter_list[next(cls_iter)]]*num_samples_cls))
yield temp_tuple[j]
else:
yield temp_tuple[j]
i += 1
j += 1