in models/feat_pool.py [0:0]
def __getitem__(self, index):
if not self.ready() or False: # and (self.class_ptr == 0).any()
no = self.class_num * self.ID_points_num * self.pick_nums
return torch.randn((no, self.feat_dim)).to(self.device), torch.full((no, ), -1).to(self.device),
ood_samples, ood_labels = [], []
if self.mode == 'VOS':
ood_samples, ood_labels = [], []
mean_embed_id = self.queue.mean(dim=1, keepdim=True) # shape(nc,1,ndim)
X = (self.queue - mean_embed_id).view(-1, self.feat_dim) # shape(nc*ns,dim)
covariance = (X.T @ X) / len(X) * 10. + .1
# covariance += 0.0001 * torch.eye(len(covariance), device=X.device)
covariance += 1.1 * torch.eye(len(covariance), device=X.device)
new_dis = MultivariateNormal(torch.zeros(self.feat_dim).cuda(), covariance_matrix=covariance)
negative_samples = new_dis.rsample((self.sample_from,)) * 2
prob_density = new_dis.log_prob(negative_samples)
cur_samples, index_prob = torch.topk(- prob_density, self.select)
negative_samples = negative_samples[index_prob]
for ci, miu in enumerate(mean_embed_id):
rand_ind = torch.randperm(self.select)[:self.pick_nums]
ood_samples.append(miu + negative_samples[rand_ind])
ood_labels.extend([ci] * self.pick_nums)
elif self.mode == 'NPOS':
mean_embed_id = self.queue.mean(dim=1, keepdim=True) # shape(nc,1,ndim)
X = (self.queue - mean_embed_id).view(-1, self.feat_dim) # shape(nc*ns,dim)
covariance = (X.T @ X) / len(X) * 10 + .1
# covariance += 0.0001 * torch.eye(len(covariance), device=X.device)
covariance += 1.1 * torch.eye(len(covariance), device=X.device)
# covariance = torch.eye(self.feat_dim).to(self.queue.device)
self.new_dis = MultivariateNormal(torch.zeros(self.feat_dim).to(self.queue.device),
covariance)
negative_samples = self.new_dis.rsample((self.sample_from,)).to(self.device) * 2
ood_samples, ood_labels = generate_outliers(self.queue, input_index=self.KNN_index, negative_samples=negative_samples,
ID_points_num=self.ID_points_num, K=self.K, select=self.select,
sampling_ratio=1.0, pic_nums=self.pick_nums, depth=self.feat_dim,
cov_mat=1.)
ood_samples = torch.cat(ood_samples).to(self.device)
ood_labels = torch.tensor(ood_labels).to(self.device)
return ood_samples, ood_labels