def __init__()

in datasets/ClassAwareSampler.py [0:0]


    def __init__(self, data_source, num_samples_cls=1,):
        num_classes = len(np.unique(data_source.labels))
        self.class_iter = RandomCycleIter(range(num_classes))
        cls_data_list = [list() for _ in range(num_classes)]
        for i, label in enumerate(data_source.labels):
            cls_data_list[label].append(i)
        self.data_iter_list = [RandomCycleIter(x) for x in cls_data_list]
        self.num_samples = max([len(x) for x in cls_data_list]) * len(cls_data_list)
        self.num_samples_cls = num_samples_cls