def __init__()

in models/resnet.py [0:0]


    def __init__(self, block, num_blocks, num_classes=10, num_outputs=10,
                 pooling='avgpool', norm=nn.BatchNorm2d, return_features=False):
        super(ResNet, self).__init__()
        if pooling == 'avgpool':
            self.pooling = nn.AvgPool2d(4)
        elif pooling == 'maxpool':
            self.pooling = nn.MaxPool2d(4)
        else:
            raise Exception('Unsupported pooling: %s' % pooling)
        self.in_planes = 64
        self.return_features = return_features

        self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn1 = norm(64)
        self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1, norm=norm)
        self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2, norm=norm)
        self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2, norm=norm)
        self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2, norm=norm)
        self.linear = nn.Linear(512, num_outputs)

        self.num_classes = num_classes
        self.num_outputs = num_outputs
        self.penultimate_layer_dim = 512

        self.build_aux_layers()