datasets/ClassPrioritySampler.py (340 lines of code) (raw):

"""Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. """ import random import numpy as np from torch.utils.data.sampler import Sampler class RandomCycleIter: def __init__ (self, data, test_mode=False): self.data_list = list(data) self.length = len(self.data_list) self.i = self.length - 1 self.test_mode = test_mode def __iter__ (self): return self def __next__ (self): self.i += 1 if self.i == self.length: self.i = 0 if not self.test_mode: random.shuffle(self.data_list) return self.data_list[self.i] class PriorityTree(object): def __init__(self, capacity, init_weights, fixed_weights=None, fixed_scale=1.0, alpha=1.0): """ fixed_weights: weights that wont be updated by self.update() """ assert fixed_weights is None or len(fixed_weights) == capacity assert len(init_weights) == capacity self.alpha = alpha self._capacity = capacity self._tree_size = 2 * capacity - 1 self.fixed_scale = fixed_scale self.fixed_weights = np.zeros(self._capacity) if fixed_weights is None \ else fixed_weights self.tree = np.zeros(self._tree_size) self._initialized = False self.initialize(init_weights) def initialize(self, init_weights): """Initialize the tree.""" # Rescale the fixed_weights if it is not zero self.fixed_scale_init = self.fixed_scale if self.fixed_weights.sum() > 0 and init_weights.sum() > 0: self.fixed_scale_init *= init_weights.sum() / self.fixed_weights.sum() self.fixed_weights *= self.fixed_scale * init_weights.sum() \ / self.fixed_weights.sum() print('FixedWeights: {}'.format(self.fixed_weights.sum())) self.update_whole(init_weights + self.fixed_weights) self._initialized = True def reset_adaptive_weights(self, adaptive_weights): self.update_whole(self.fixed_weights + adaptive_weights) def reset_fixed_weights(self, fixed_weights, rescale=False): """ Reset the manually designed weights and update the whole tree accordingly. @rescale: rescale the fixed_weights such that fixed_weights.sum() = self.fixed_scale * adaptive_weights.sum() """ adaptive_weights = self.get_adaptive_weights() fixed_sum = fixed_weights.sum() if rescale and fixed_sum > 0: # Rescale fixedweight based on adaptive weights scale = self.fixed_scale * adaptive_weights.sum() / fixed_sum else: # Rescale fixedweight based on previous fixedweight scale = self.fixed_weights.sum() / fixed_sum self.fixed_weights = fixed_weights * scale self.update_whole(self.fixed_weights + adaptive_weights) def update_whole(self, total_weights): """ Update the whole tree based on per-example sampling weights """ if self.alpha != 1: total_weights = np.power(total_weights, self.alpha) lefti = self.pointer_to_treeidx(0) righti = self.pointer_to_treeidx(self.capacity-1) self.tree[lefti:righti+1] = total_weights # Iteratively find a parent layer while lefti != 0 and righti != 0: lefti = (lefti - 1) // 2 if lefti != 0 else 0 righti = (righti - 1) // 2 if righti != 0 else 0 # Assign paraent weights from right to left for i in range(righti, lefti-1, -1): self.tree[i] = self.tree[2*i+1] + self.tree[2*i+2] def get_adaptive_weights(self): """ Get the instance-aware weights, that are not mannually designed""" if self.alpha == 1: return self.get_total_weights() - self.fixed_weights else: return self.get_raw_total_weights() - self.fixed_weights def get_total_weights(self): """ Get the per-example sampling weights return shape: [capacity] """ lefti = self.pointer_to_treeidx(0) righti = self.pointer_to_treeidx(self.capacity-1) return self.tree[lefti:righti+1] def get_raw_total_weights(self): """ Get the per-example sampling weights return shape: [capacity] """ lefti = self.pointer_to_treeidx(0) righti = self.pointer_to_treeidx(self.capacity-1) return np.power(self.tree[lefti:righti+1], 1/self.alpha) @property def size(self): return self._tree_size @property def capacity(self): return self._capacity def __len__(self): return self.capacity def pointer_to_treeidx(self, pointer): assert pointer < self.capacity return int(pointer + self.capacity - 1) def update(self, pointer, priority): assert pointer < self.capacity tree_idx = self.pointer_to_treeidx(pointer) priority += self.fixed_weights[pointer] if self.alpha != 1: priority = np.power(priority, self.alpha) delta = priority - self.tree[tree_idx] self.tree[tree_idx] = priority while tree_idx != 0: tree_idx = (tree_idx - 1) // 2 self.tree[tree_idx] += delta def update_delta(self, pointer, delta): assert pointer < self.capacity tree_idx = self.pointer_to_treeidx(pointer) ratio = 1- self.fixed_weights[pointer] / self.tree[tree_idx] # delta *= ratio if self.alpha != 1: # Update delta if self.tree[tree_idx] < 0 or \ np.power(self.tree[tree_idx], 1/self.alpha) + delta < 0: import pdb; pdb.set_trace() delta = np.power(np.power(self.tree[tree_idx], 1/self.alpha) + delta, self.alpha) \ - self.tree[tree_idx] self.tree[tree_idx] += delta while tree_idx != 0: tree_idx = (tree_idx - 1) // 2 self.tree[tree_idx] += delta def get_leaf(self, value): assert self._initialized, 'PriorityTree not initialized!!!!' assert self.total > 0, 'No priority weights setted!!' parent = 0 while True: left_child = 2 * parent + 1 right_child = 2 * parent + 2 if left_child >= len(self.tree): tgt_leaf = parent break if value < self.tree[left_child]: parent = left_child else: value -= self.tree[left_child] parent = right_child data_idx = tgt_leaf - self.capacity + 1 return data_idx, self.tree[tgt_leaf] # data idx, priority @property def total(self): assert self._initialized, 'PriorityTree not initialized!!!!' return self.tree[0] @property def max(self): return np.max(self.tree[-self.capacity:]) @property def min(self): assert self._initialized, 'PriorityTree not initialized!!!!' return np.min(self.tree[-self.capacity:]) def get_weights(self): wdict = {'fixed_weights': self.fixed_weights, 'total_weights': self.get_total_weights()} if self.alpha != 1: wdict.update({'raw_total_weights': self.get_raw_total_weights(), 'alpha': self.alpha}) return wdict class ClassPrioritySampler(Sampler): """ A sampler combining manually designed sampling strategy and prioritized sampling strategy. Manually disigned strategy contains two parts: $$ manual_weights = lam * balanced_weights + (1-lam) uniform_weights Here we use a generalized version of balanced weights as follows, when n limits to infinity, balanced_weights = real_balanced_weights $$ balanced_weights = uniform_weights ^ (1/n) Then the balanced weights are scaled such that $$ balanced_weights.sum() = balance_scale * uniform_weights.sum() Note: above weights are per-class weights Overall sampling weights are given as $$ sampling_weights = manual_weights * fixed_scale + priority_weights Arguments: @dataset: A dataset @balance_scale: The scale of balanced_weights @lam: A weight to combine balanced weights and uniform weights - None for shifting sampling - 0 for uniform sampling - 1 for balanced sampling @fixed_scale: The scale of manually designed weights - fixed_scale < 0 means, the manually designed distribution will be used as the backend distribution of priorities. @cycle: shifting strategy - 0 for linear shifting: 3 -> 2 - > 1 - 1 for periodic shifting: 3 -> 2 - > 1 -> 3 -> 2 - > 1 -> 3 -> 2 - > 1 - 2 for cosine-like periodic shifting: 3 -> 2 - > 1 -> 1 -> 2 - > 3 -> 3 -> 2 - > 1 @nroot: - None for truly balanced weights - >= 2 for pseudo-balanced weights @rescale: whether to rebalance the manual weights and priority weights every epoch @root_decay: - 'exp': for exponential decay - 'linear': for linear decay """ def __init__(self, dataset, balance_scale=1.0, fixed_scale=1.0, lam=None, epochs=90, cycle=0, nroot=None, manual_only=False, rescale=False, root_decay=None, decay_gap=30, ptype='score', pri_mode='train', momentum=0., alpha=1.0): """ """ self.dataset = dataset self.balance_scale = balance_scale self.fixed_scale = fixed_scale self.epochs = epochs self.lam = lam self.cycle = cycle self.nroot = nroot self.rescale = rescale self.manual_only = manual_only self.root_decay = root_decay self.decay_gap = decay_gap self.ptype = ptype self.pri_mode = pri_mode self.num_samples = len(dataset) self.manual_as_backend = False self.momentum = momentum self.alpha = alpha assert 0. <= self.momentum <= 1.0 assert 0. <= self.alpha # Change the backend distribution of priority if needed if self.fixed_scale < 0: self.fixed_scale = 0 self.manual_as_backend = True # If using root_decay, reset relevent parameters if self.root_decay in ['exp', 'linear', 'autoexp']: self.lam = 1 self.manual_only = True self.nroot = 1 if self.root_decay == 'autoexp': self.decay_gap = 1 self.decay_factor = np.power(nroot, 1/(self.epochs-1)) else: assert self.root_decay is None assert self.nroot is None or self.nroot > 1 print("====> Decay GAP: {}".format(self.decay_gap)) # Take care of lambdas self.freeze = True if self.lam is None: self.freeze = False if cycle == 0: self.lams = np.linspace(0, 1, epochs) elif cycle == 1: self.lams = np.concatenate([np.linspace(0,1,epochs//3)] * 3) elif cycle == 2: self.lams = np.concatenate([np.linspace(0,1,epochs//3), np.linspace(0,1,epochs//3)[::-1], np.linspace(0,1,epochs//3)]) else: raise NotImplementedError( 'cycle = {} not implemented'.format(cycle)) else: self.lams = [self.lam] # Get num of samples per class self.cls_cnts = [] self.labels = labels = np.array(self.dataset.labels) for l in np.unique(labels): self.cls_cnts.append(np.sum(labels==l)) self.num_classes = len(self.cls_cnts) self.cnts = np.array(self.cls_cnts).astype(float) # Get per-class image indexes self.cls_idxs = [[] for _ in range(self.num_classes)] for i, label in enumerate(self.dataset.labels): self.cls_idxs[label].append(i) self.data_iter_list = [RandomCycleIter(x) for x in self.cls_idxs] for ci in range(self.num_classes): self.cls_idxs[ci] = np.array(self.cls_idxs[ci]) # Build balanced weights based on class counts self.balanced_weights = self.get_balanced_weights(self.nroot) self.uniform_weights = self.get_uniform_weights() self.manual_weights = self.get_manual_weights(self.lams[0]) # back_weights = self.get_balanced_weights(1.5) back_weights = self.uniform_weights # Calculate priority ratios that reshape priority into target distribution self.per_cls_ratios = self.get_cls_ratios( self.manual_weights if self.manual_as_backend else back_weights) self.per_example_ratios = self.broadcast(self.per_cls_ratios) # Setup priority tree if self.ptype == 'score': self.init_weight = 1. elif self.ptype in ['CE', 'entropy']: self.init_weight = 6.9 else: raise NotImplementedError('ptype {} not implemented'.format(self.ptype)) if self.manual_only: self.init_weight = 0. self.per_example_uni_weights = np.ones(self.num_samples) * self.init_weight self.per_example_velocities = np.zeros(self.num_samples) # init_priorities = np.power(self.init_weight, self.alpha) \ # * self.uniform_weights * self.per_cls_ratios init_priorities = self.init_weight * self.uniform_weights * self.per_cls_ratios self.ptree = PriorityTree(self.num_classes, init_priorities, self.manual_weights.copy(), fixed_scale=self.fixed_scale, alpha=self.alpha) def get_cls_ratios(self, tgt_weights): if tgt_weights is self.uniform_weights: return np.ones_like(self.uniform_weights) per_cls_ratios = tgt_weights / self.uniform_weights per_cls_ratios *= self.uniform_weights.sum() / tgt_weights.sum() return per_cls_ratios def get_cls_weights(self): ratioed_ws = self.per_example_uni_weights * self.per_example_ratios return self.debroadcast_sum(ratioed_ws) def broadcast(self, per_cls_info): per_exmaple_info = np.zeros(self.num_samples) # Braodcast per-cls info to each example for ci in range(self.num_classes): per_exmaple_info[self.cls_idxs[ci]] = per_cls_info[ci] return per_exmaple_info def debroadcast_sum(self, per_example_info): per_cls_info = np.zeros(self.num_classes) # DeBraodcast per-example info to each cls by summation for ci in range(self.num_classes): per_cls_info[ci] = per_example_info[self.cls_idxs[ci]].sum() return per_cls_info def get_manual_weights(self, lam): # Merge balanced weights and uniform weights if lam == 1: manual_weights = self.balanced_weights.copy() elif lam == 0: manual_weights = self.uniform_weights.copy() else: manual_weights = self.balanced_weights * lam + (1-lam) * self.uniform_weights return manual_weights def get_uniform_weights(self): return self.cnts.copy() def get_balanced_weights(self, nroot): """ Calculate normalized generalized balanced weights """ cnts = self.cnts if nroot is None: # Real balanced sampling weights, each class has the same weights # Un-normalized !!! cls_ws = np.ones(len(cnts)) elif nroot >= 1: # Generalized balanced weights # Un-normalized !!! cls_ws = cnts / cnts.sum() cls_ws = np.power(cls_ws, 1./nroot) * cnts.sum() cls_ws = cls_ws else: raise NotImplementedError('root:{} not implemented'.format(nroot)) # Get un-normalized weights balanced_weights = cls_ws # Normalization and rescale balanced_weights *= self.num_samples / balanced_weights.sum() * \ self.balance_scale return balanced_weights def __iter__(self): for _ in range(self.num_samples): w = random.random() * self.ptree.total ci, pri = self.ptree.get_leaf(w) yield next(self.data_iter_list[ci]) def __len__(self): return self.num_samples def reset_weights(self, epoch): # If it is linear shifting if not self.freeze: e = np.clip(epoch, 0, self.epochs-1) self.manual_weights = self.get_manual_weights(self.lams[e]) # make sure 'self.fixed_scale > 0' and 'self.manual_as_backend = True' are # mutually exclusive if self.fixed_scale > 0: self.ptree.reset_fixed_weights(self.manual_weights, self.rescale) if self.manual_as_backend: self.update_backend_distribution(self.manual_weights) # If it is root decay if self.root_decay in ['exp', 'linear', 'autoexp'] and epoch % self.decay_gap == 0: if self.root_decay == 'exp': self.nroot *= 2 elif self.root_decay == 'linear': self.nroot += 1 elif self.root_decay == 'autoexp': # self.nroot *= self.decay_factor self.nroot = np.power(self.decay_factor, epoch) bw = self.get_balanced_weights(self.nroot) if self.manual_as_backend: self.update_backend_distribution(bw) else: self.ptree.reset_fixed_weights(bw) def update_backend_distribution(self, tgt_weights): # Recalculate the cls ratios based on the given target distribution self.per_cls_ratios = self.get_cls_ratios(tgt_weights) self.per_example_ratios = self.broadcast(self.per_cls_ratios) # Recalculate the new per-class weights based on the new ratios # new_backend_weights = self.init_weight * self.uniform_weights * self.per_cls_ratios new_cls_weights = self.get_cls_weights() self.ptree.reset_adaptive_weights(new_cls_weights) def update_weights(self, inds, weights, labels): """ Update priority weights """ if not self.manual_only and self.pri_mode == 'train': weights = np.clip(weights, 0, self.init_weight) # Iterate over all classes in the batch for l in np.unique(labels): # Calculate per-class delta weights example_inds = inds[labels==l] last_weights = self.per_example_uni_weights[example_inds] # delta = np.power(weights[labels==l], self.alpha) - \ # np.power(last_weights, self.alpha) delta = weights[labels==l] - last_weights delta = self.momentum * self.per_example_velocities[example_inds] + \ (1-self.momentum) * delta # Update velocities self.per_example_velocities[example_inds] = delta # Update per-example weights # self.per_example_uni_weights[example_inds] = weights[labels==l] self.per_example_uni_weights[example_inds] += delta # Sacle the delta # (ie, the per-example weights both before and after update) delta *= self.per_example_ratios[example_inds] # Update tree if self.alpha == 1: self.ptree.update_delta(l, delta.sum()) else: self.ptree.update(l, self.per_example_uni_weights[self.cls_idxs[l]].sum()) def reset_priority(self, weights, labels): if self.pri_mode == 'valid': assert len(np.unique(labels)) == self.num_classes weights = np.clip(weights, 0, self.init_weight) cls_weights = np.zeros(self.num_classes) for c in np.unique(labels): cls_weights[c] = weights[labels==c].mean() cls_weights *= self.cnts cls_weights *= self.per_cls_ratios self.ptree.reset_adaptive_weights(cls_weights) def get_weights(self): return self.ptree.get_weights() def get_sampler(): return ClassPrioritySampler